

 Navigation

 	
 index

 	
 next |

 	djangocms-cascade 0.10.1 documentation

Welcome to DjangoCMS-Cascade’s documentation

Project’s home

Check for the latest release of this project on Github [https://github.com/jrief/djangocms-cascade].

Please report bugs or ask questions using the Issue Tracker [https://github.com/jrief/djangocms-cascade/issues].

Project’s goals

	Create a modular system, which allows programmers to add simple widget code, without having to
implement an extra djangoCMS [https://www.django-cms.org/] plugins for each of them.

	Make available a meaningful subset of widgets as available for the most common CSS frameworks,
such as Twitter Bootstrap [http://getbootstrap.com/]. With these special plugins, in many configurations, djangoCMS
can be operated using one single template, containing one generic placeholder.

	Extend this djangoCMS plugin, to be used with other CSS frameworks such as Foundation 5 [http://foundation.zurb.com/],
Unsemantic [http://unsemantic.com/] and others.

	Use the base functionality of djangoCMS-Cascade to easily add special plugins. For instance,
djangoSHOP [https://www.django-shop.org/] implements all its cart and checkout specific forms this way.

Contents:

	For the Impatient
	Create a Python Virtual Environment

	Introduction
	Extensibility
	Naming Conflicts

	Installation
	Dependencies

	Create a database schema

	Install Bootstrap

	Configuration
	Configure the CMS plugin

	Activate the plugins

	Restrict plugins to a particular placeholder

	Define the leaf plugins

	Bootstrap 3 with AngularJS

	Template Customization

	Link Plugin
	Prerequisites

	Link Plugin with sharable fields
	Changing shared settings

	Extending the Link Plugin

	Bootstrap 3 Grid system
	Bootstrap Container
	Small devices exclusively

	Large devices exclusively

	Fluid Container

	Bootstrap Row

	Horizontal Rule

	Column

	Complete DOM Structure

	Adding Plugins into a hard coded grid

	Nested Columns and Rows

	Other Bootstrap3 specific Plugins
	HTML5 <picture> and the new elements
	Adaptive resizing the images
	Browser support

	Image Plugin Reference
	Image

	Image Title

	Alternative Description

	Link type

	Image Shapes

	Responsive Image Width

	Fixed Image Width

	Adapt Image Height

	Resize Options

	Picture Plugin Reference
	Adapt Picture Heights

	Adapt Picture Zoom

	Template tag for the Bootstrap3 Navbar

	Panel element

	Jumbotron

	Tab Sets

	Secondary menu

	Section Bookmarks
	Configuration
	Hashbang Mode

	Usage

	Hyperlinking to a Bookmark

	Segmentation of the DOM
	Configuration

	Usage

	Emulating Users

	Working with sharable fields
	Configure a Cascade Plugins to optionally share some fields

	Control some named settings

	Customize CSS classes and inline styles
	Configure a Cascade plugins to accept extra fields

	Enable extra fields through the administration backend
	Allow ID

	CSS classes

	CSS inline styles
	Use it rarely, use it wise

	Chose an alternative rendering template
	Change the path for template lookups

	Configure Cascade Plugins to be rendered using alternative templates
	Usage

	The CMS Clipboard
	Persisting the Clipboard
	Configuration

	Caveats

	Extending Cascade
	Simple Example

	Customize Stored Data

	Widgets for a Partial Form Field

	Overriding the Form

	Overriding the Model

	Plugin Attribute Reference

	Generic Plugins
	SimpleWrapperPlugin

	HorizontalRulePlugin

	HeadingPlugin

	CustomSnippetPlugin
	Adding children to a CustomSnippetPlugin

	Release History
	0.10.1

	0.10.0

	0.9.4

	0.9.3

	0.9.2

	0.9.1

	0.9.0

	0.8.5

	0.8.4

	0.8.3

	0.8.2

	0.8.1

	0.8.0

	0.7.3

	0.7.2

	0.7.1

	0.7.0

	0.6.2

	0.6.1

	0.6.0

	0.5.0

	0.4.5

	0.4.4

	0.4.3

	0.4.2

	0.4.1

	0.4.0

	0.3.2

	0.3.1

	0.3.0

	0.2.0

	0.1.2

	0.1.1

	0.1.0
	Thanks

Indices and tables

	Index

	Module Index

	Search Page

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

For the Impatient

This HowTo gives you a quick instruction on how to get a demo of djangocms-cascade up and
running. It also is a good starting point to ask questions or report bugs, since its backend is
used as a fully functional reference implementation, used by the unit tests of project.

Create a Python Virtual Environment

To keep environments separate, create a virtual environment and install external dependencies.
Missing packages with JavaScript files and Style Sheets, which are not available via pip must be
installed via npm:

$ git clone https://github.com/jrief/djangocms-cascade.git
$ cd djangocms-cascade
$ virtualenv cascadenv
$ source cascadenv/bin/activate
(cascadenv)$ pip install -r requirements/django19.txt
(cascadenv)$ npm install

Initialize the database, create a superuser and start the development server:

cd examples
./manage.py migrate
./manage.py createsuperuser
./manage.py runserver

Point a browser to http://localhost:8000/admin/login/?next=/ and log in as the super user you just
created. Hit “next” and fill out the form to create your first page. Afterwards, click Structure
on the top of the page. Now a heading named Main Content appears. This heading symbolizes
our main djangoCMS Placeholder.

Locate the plus sign right to the heading and click on it. From its context menu select
Container located in the section Bootstrap:

[image: add-container]

This brings you into the editor mode for a Bootstrap container. To this container you may add one or
more Bootstrap Rows. Inside these rows you may organize the layout using some Bootstrap
Columns.

Please proceed with the detailled explanation on how to use the
Bootstrap’s grid system within djangocms-cascade.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

Introduction

DjangoCMS-Cascade is a collection of plugins for Django-CMS [https://github.com/divio/django-cms/] >=3.3 to add various HTML elements
from CSS frameworks, such as Twitter Bootstrap [http://getbootstrap.com/] to the Django templatetag [https://docs.djangoproject.com/en/dev/howto/custom-template-tags/] placeholder [https://django-cms.readthedocs.org/en/latest/advanced/templatetags.html#placeholder]. This
Django App makes it very easy to add other CSS frameworks, or to extend an existing collection with
additional elements.

DjangoCMS-Cascade allows web editors to layout their pages, without having to create different
Django templates [https://docs.djangoproject.com/en/dev/topics/templates/] for each layout modification. In most cases, one template with one single
placeholder is enough. The editor then can subdivide that placeholder into rows and columns, and
add additional DOM [http://www.w3.org/DOM/] elements such as buttons, rulers, or even the Bootstrap Carousel. Some basic
understanding on how the DOM works is required though.

Twitter Bootstrap is a well documented CSS framework which gives web designers lots of
possibilities to add a consistent structure to their pages. This collection of Django-CMS plugins [https://django-cms.readthedocs.org/en/latest/getting_started/plugin_reference.html]
offers a subset of these predefined elements to web designers.

Extensibility

This module requires one database table with one column to store all data in a JSON object. All
DjangoCMS-Cascade plugins share this same model, therefore they can be easily extended, because
new data structures are added to that JSON object without requiring a database migration.

Another three database tables are required for additional optional features.

Naming Conflicts

Some djangoCMS plugins may use the same name as plugins from djangocms-cascade. To prevent
confusion, since version 0.7.2, all Cascade plugins as prefixed with a Ϟ (koppa) symbol. This can
be deactivated or changed by setting CMSPLUGIN_CASCADE['plugin_prefix'] to False or any
other symbol.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

Installation

Install the latest stable release

$ pip install djangocms-cascade

or the current development release from github

$ pip install -e git+https://github.com/jrief/djangocms-cascade.git#egg=djangocms-cascade

Dependencies

	Django [http://djangoproject.com/] >=1.8

	DjangoCMS [https://www.django-cms.org/] >=3.2

Create a database schema

./manage.py migrate cmsplugin_cascade

Install Bootstrap

Since the Bootstrap CSS and JavaScript files are part of their own repository, they are not shipped
within this package. Furthermore, as they are not part of the PyPI network, they have to be
installed through another package manager, namely bower [http://bower.io/].

cd djangocms-cascade
bower install --require

Alternatively copy the installed bower_components into a directory of your project or to any
other meaningful location, but ensure that the directory bower_components can be found by
your StaticFileFinder. In doubt, add that directory to your STATICFILES_DIRS:

STATICFILES_DIRS = (
 os.path.abspath(os.path.join(MY_PROJECT_DIR, 'bower_components')),
)

Configuration

Add 'cmsplugin_cascade' to the list of INSTALLED_APPS in the project’s settings.py
file. Optionally add ‘cmsplugin_cascade.extra_fields’ and/or ‘cmsplugin_cascade.sharable’ to
the list of INSTALLED_APPS. Make sure that these entries are located before the entry cms.

Configure the CMS plugin

INSTALLED_APPS = (
 ...
 'cmsplugin_cascade',
 'cmsplugin_cascade.clipboard', # optional
 'cmsplugin_cascade.extra_fields', # optional
 'cmsplugin_cascade.sharable', # optional
 'cmsplugin_cascade.segmentation', # optional
 'cms',
 ...
)

Activate the plugins

By default, no djangocms-cascade plugins is activated. Activate them in the project’s
settings.py with the directive CMSPLUGIN_CASCADE_PLUGINS.

To activate all available Bootstrap plugins, use:

CMSPLUGIN_CASCADE_PLUGINS = ('cmsplugin_cascade.bootstrap3',)

If for some reason, only a subset of the available Bootstrap plugins shall be activated, name each
of them. If for example only the grid system shall be used, but no other Bootstrap plugins, then
configure:

CMSPLUGIN_CASCADE_PLUGINS = ('cmsplugin_cascade.bootstrap3.container',)

A very useful plugin is the LinkPlugin. It superseds the djangocms-link [https://github.com/divio/djangocms-link]-plugin, normally used
together with the CMS.

CMSPLUGIN_CASCADE_PLUGINS += ('cmsplugin_cascade.link',)

Generic Plugins which are not opinionated towards a specific CSS framework, are kept in a
separate folder. It is strongly suggested to always activate them:

CMSPLUGIN_CASCADE_PLUGINS = ('cmsplugin_cascade.generic',)

Sometimes it is useful to do a segmentation. Activate this by adding its plugin:

CMSPLUGIN_CASCADE_PLUGINS = ('cmsplugin_cascade.segmentation',)

Restrict plugins to a particular placeholder

Unfortunately djangoCMS does not allow to declare dynamically which plugins are eligible to be
added as children of other plugins. This is determined while bootstrapping the Django project and
thus remain static. We therefore must somehow trick the CMS to behave as we want.

Say, our Placeholder named “Main Content” shall accept the BootstrapContainerPlugin as its only
child, we then must use this CMS settings directive:

CMS_PLACEHOLDER_CONF = {
 'Main Content Placeholder': {
 'plugins': ['BootstrapContainerPlugin'],
 'text_only_plugins': ['TextLinkPlugin'],
 'parent_classes': {'BootstrapContainerPlugin': None},
 'glossary': {
 'breakpoints': ['xs', 'sm', 'md', 'lg'],
 'container_max_widths': {'xs': 750, 'sm': 750, 'md': 970, 'lg': 1170},
 'fluid': False,
 'media_queries': {
 'xs': ['(max-width: 768px)'],
 'sm': ['(min-width: 768px)', '(max-width: 992px)'],
 'md': ['(min-width: 992px)', '(max-width: 1200px)'],
 'lg': ['(min-width: 1200px)'],
 },
 },
 },
}

Here we add the BootstrapContainerPlugin to plugins and parent_classes. This is because
the Container plugin normally is the root plugin in a placeholder. If this plugin would not restrict
its parent plugin classes, we would be allowed to use it as a child of any plugin. This could
destroy the page’s grid.

Note

Until version 0.7.1 the Container plugin did not restrict it’s parent_classes and
therefore we did not have to add it to the CMS_PLACEHOLDER_CONF settings.

Furthermore, in the above example we must add the TextLinkPlugin to text_only_plugins.
This is because the TextPlugin is not part of the Cascade ecosystem and hence does not know
which plugins are allowed as its children.

The dictionary named glossary sets the initial parameters of the Bootstrap 3 Grid system.

Define the leaf plugins

Leaf plugins are those, which contain real data, say text or images. Hence the default setting
is to allow the TextPlugin and the FilerImagePlugin as leafs. This can be overridden using
the configuration directive

CMSPLUGIN_CASCADE = {
 ...
 'alien_plugins': ('TextPlugin', 'FilerImagePlugin', 'OtherLeafPlugin',),
 ...
}

Bootstrap 3 with AngularJS

Some Bootstrap3 plugins can be rendered using templates which are suitable for the very popular
Angular UI Bootstrap [http://angular-ui.github.io/bootstrap/] framework. This can be done during runtime; when editing the plugin a
select box appears which allows to chose an alternative template for rendering.

Template Customization

Make sure that the style sheets are referenced correctly by the used templates. DjangoCMS requires
Django-Sekizai [http://django-sekizai.readthedocs.org/en/latest/] to organize these includes, so a strong recommendation is to use that Django app.

The templates used for a DjangoCMS project shall include a header, footer, the menu bar and
optionally a breadcrumb, but should leave out an empty working area. When using HTML5, wrap this
area into an <article> or <section> element or just use it unwrapped (suggested). This
placeholder shall be named using a generic identifier, for instance “Main Content” or similar:

{% load cms_tags %}

<!-- wrapping element (optional) -->
 {% placeholder "Main Content" %}
<!-- /wrapping element -->

From now on, the page layout can be adopted inside this placeholder, without having to fiddle with
template coding anymore.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

Link Plugin

djangocms-cascade ships with its own link plugin. This is because other plugins from the
Cascade eco-system, such as the BootstrapButtonPlugin, the BootstrapImagePlugin or the
BootstrapPicturePlugin also require the functionality to set links to internal- and external
URLs. Since we do not want to duplicate the linking functionality for each of these plugins, it has
been moved into its own base class. Therefore we will use the terminology TextLinkPlugin when
referring to text-based links.

The de-facto plugin for links, djangocms-link [https://github.com/divio/djangocms-link] can’t be used as a base class for these plugins,
hence an alternative implementation has been created within the Cascade framework. The link related
data is stored in a sub-dictionary named link in our main JSON field.

Prerequisites

Before using this plugin, assure that 'cmsplugin_cascade.link' is member of the list or
tuple CMSPLUGIN_CASCADE_PLUGINS in the project’s settings.py.

[image: simple-link-element]

The behavior of this Plugin is what you expect from a Link editor. The field Link Content is the
text displayed between the opening and closing <a> tag. If used in combination with
djangocms-text-ckeditor [https://github.com/divio/djangocms-text-ckeditor] the field automatically is filled out.

By changing the Link type, the user can choose between three types of Links:

	Internal Links pointing to another page inside the CMS.

	External Links pointing to a valid Internet URL.

	Links pointing to a valid e-mail address.

The optional field Title can be used to add a title="some value" attribute to the
<a href ...> element.

With Link Target, the user can specify, whether the linked content shall open in the current
window or if the browser shall open a new window.

Link Plugin with sharable fields

If your web-site contains many links pointing onto external URLs, you might want to refer to them
by a symbolic name, rather than having to reenter the URL repeatedly. With djangocms-cascade
this can be achieved easily by declaring some of the plugin’s fields as “sharable”.

Assure that INSTALLED_APPS contain 'cmsplugin_cascade.sharable', then redefine the
TextLinkPlugin to have sharable fields in settings.py:

CMSPLUGIN_CASCADE = {
 ...
 'plugins_with_sharables':
 ...
 'TextLinkPlugin': ('link',), # and optionally other fields
 ...
 },
 ...
}

This will change the Link Plugin’s editor slightly. Note the extra field added to the bottom of the
form.

[image: sharable-link-element]

Now the URL for this ink entity is stored in a central entity. This feature is useful, if for
instance the URL of an external web page may change in the future. Then the administrator can change
that link in the administration area once, rather than having to go through all the pages and check
if that link was used.

To retain the Link settings, click onto the checkbox Remember these settings as: ... and give it
a name of your choice. The next time your create a Shared Link element, you may select a previously
named settings from the select field Shared Settings. Since these settings can be shared among
other plugins, these input fields are disabled and can’t be changed anymore.

Changing shared settings

The settings of a shared plugin can be changed globally, for all plugins using them. To edit such a
shared setting, in the Django Admin, go into the list view for
Home › Cmsplugin_cascade › Shared between Plugins and choose the named shared settings.

Please note, that each plugin type can specify which fields shall be sharable between its plugins.
In this example, only the Link itself is shared, but one could configure djangocms-cascade to
also share the title and/or the link’s target tags.

Then only these fields are editable in the detail view Shared between Plugins. The interface
for other shared plugin may vary substantially, depending of their type definition.

Extending the Link Plugin

While programming third party modules for Django, one might have to access a model instance through
a URL and thus add the method get_absolute_url [https://docs.djangoproject.com/en/stable/ref/models/instances/#get-absolute-url] to that Django model. Since such a URL is neither a
CMS page, nor a URL to an external web page, it would be convenient to access that model using a
special Link type.

For example, in django-shop [https://github.com/awesto/django-shop] we can allow to link directly from a CMS page to a shop’s product.
This is achieved by reconfiguring the Link Plugin inside Cascade with:

CMSPLUGIN_CASCADE = {
 ...
 'dependencies': {
 'shop/js/admin/shoplinkplugin.js': 'cascade/js/admin/linkpluginbase.js',
 },
 'link_plugin_classes': (
 'shop.cascade.plugin_base.CatalogLinkPluginBase',
 'cmsplugin_cascade.link.plugin_base.LinkElementMixin',
 'shop.cascade.plugin_base.CatalogLinkForm',
),
}

The tuple specified through link_plugin_classes replaces the base class for the LinkPlugi class
and the form class for its editor. Please refer to the django-shop [https://github.com/awesto/django-shop] for implementation details of
the classes.

Now the select box for Link type will offer one additional option: “Product”. When this is
selected, the site administrator can choose between all of the shops products.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

Bootstrap 3 Grid system

In order to take full advantage of djangocms-cascade, you should be familiar with the
concepts of the Bootstrap Grid System [http://getbootstrap.com/css/#grid], since all other Bootstrap components depend upon.

Bootstrap Container

A Container is the outermost component the Bootstrap framework knows of. Here the designer can
specify the breakpoints of a web page. By default, Bootstrap offers 4 breakpoints: “large”,
“medium”, “small” and “tiny”. These determine for which kind of screen widths, the grid system may
switch the layout.

The editor window for a Container element offers the possibility to deactivate certain breakpoints.
While this might make sense under certain conditions, it is safe to always keep all four breakpoints
active, since this gives the designer of the web page the maximum flexibility.

[image: edit-container]

Small devices exclusively

If the web page shall be optimized just for small but not for large devices, then disable the
breakpoints for Large and/or Medium. In the project’s style-sheets, the maximum width
of the container element then must be reduced to that chosen breakpoint:

@media(min-width: 1200px) {
 .container {
 max-width: 970px;
 }
}

or, if you prefers the SASS syntax:

@media(min-width: $screen-lg) {
 .container {
 max-width: $container-desktop;
 }
}

Large devices exclusively

If the web page shall be optimized just for large but not for small devices, then disable the
breakpoints for Tiny and/or Small.

Changing the style-sheets then is not required for this configuration setting.

Fluid Container

A variant of the normal Bootstrap Container is the Fluid Container. It can be enabled by a checkbox
in the editors window. Fluid Containers have no hards breakpoints, they adopt their width to
whatever the browser pretends and are slightly larger than their non-fluid counterpart.

A fluid container makes it impossible to determine the maximum width of responsive images for the
large media breakpoint, because it is applied whenever the browser width extends 1200 pixels,
but there is no upper limit. For responsive images in the smaller breakpoints (“tiny”, “small”
and “medium”) we use the width of the next larger breakpoint, but for images in the “large” media
breakpoints we somehow must specify an arbitrary maximum width. The default width is set to 1980
pixels, but can be changed, to say 2500 pixels, using the following configuration in your
settings.py:

CMSPLUGIN_CASCADE = {
 ...
 'bootstrap3': (
 ('xs', (768, 'mobile', _("mobile phones"), 750, 768)),
 ('sm', (768, 'tablet', _("tablets"), 750, 992)),
 ('md', (992, 'laptop', _("laptops"), 970, 1200)),
 ('lg', (1200, 'desktop', _("large desktops"), 1170, 2500)),
),
}

Note

Fluid container are specially useful for Hero images, full-width Carousels and the
Jumbotron plugin. When required, add a free standing fluid container to the placeholder and as
it’s only child, use the picture or carousel plugin. Its content then is stretched to the
browser’s full width.

Bootstrap Row

Each Bootstrap Container may contain one or more Bootstrap Rows. A row does not accept any
configuration setting. However, while editing, one can specify the number of columns. When adding or
changing a row, then this number of columns are added if its value exceeds the current number of
columns. Reducing the number of columns does not delete any of them; they must explicitly be chosen
from the context menu in structure view.

[image: edit-row]

Horizontal Rule

A horizontal rule is used to separate rows optically from each other.

[image: rule-editor]

Column

In the column editor, one can specify the width, the offset and the visibility of each column.
These values can be set for each of the four breakpoints (tiny, small, medium and large),
as specified by the Container plugin.

At the beginning this may feel rather complicate, but consider that Bootstrap 3 is mobile first,
therefore all column settings, first are applied to the narrow breakpoints, which later can be
overridden for larger breakpoints at a later stage. This is the reason why this editor starts with
the column widths and column offsets for tiny rather than for large displays.

[image: edit-column]

Note

If the current column is member of a container which disables some of its breakpoints
(large, medium, small or tiny), then that column editor shows up only with the
input fields for the enabled breakpoints.

Complete DOM Structure

After having added a container with different rows and columns, you may add the leaf plugins. These
hold the actual content, such as text and images.

[image: structure-container]

By pressing the button Publish changes, the single blocks are regrouped and displayed using
the Bootstrap’s grid system.

Adding Plugins into a hard coded grid

Sometimes the given Django template already defines a Bootstrap Container, or Row inside a Container
element. Example:

<div class="container">
 {% placeholder "Row Content" %}
</div>

or

<div class="container">
 <div class="row">
 {% placeholder "Column Content" %}
 </div>
</div>

Here the Django templatetag {% placeholder "Row Content" %} requires a Row- rather than a
Container-plugin; and the templatetag {% placeholder "Column Content" %} requires a
Column-plugin. Hence we must tell djangocms-cascade which breakpoints shall be allowed and what
the containers extensions shall be. This must be hard-coded inside your setting.py:

CMS_PLACEHOLDER_CONF = {
 # for a row-like placeholder configuration ...
 'Row Content': {
 'plugins': ['BootstrapRowPlugin'],
 'parent_classes': {'BootstrapRowPlugin': []},
 'require_parent': False,
 'glossary': {
 'breakpoints': ['xs', 'sm', 'md', 'lg'],
 'container_max_widths': {'xs': 750, 'sm': 750, 'md': 970, 'lg': 1170},
 'fluid': False,
 'media_queries': {
 'xs': ['(max-width: 768px)'],
 'sm': ['(min-width: 768px)', '(max-width: 992px)'],
 'md': ['(min-width: 992px)', '(max-width: 1200px)'],
 'lg': ['(min-width: 1200px)'],
 },
 }
 },
 # or, for a column-like placeholder configuration ...
 'Colummn Content': {
 'plugins': ['BootstrapColumnPlugin'],
 'parent_classes': {'BootstrapColumnPlugin': []},
 'require_parent': False,
 'glossary': {
 'breakpoints': ['xs', 'sm', 'md', 'lg'],
 'container_max_widths': {'xs': 750, 'sm': 750, 'md': 970, 'lg': 1170},
 'fluid': False,
 'media_queries': {
 'xs': ['(max-width: 768px)'],
 'sm': ['(min-width: 768px)', '(max-width: 992px)'],
 'md': ['(min-width: 992px)', '(max-width: 1200px)'],
 'lg': ['(min-width: 1200px)'],
 },
 }
 },
}

Please refer to the DjangoCMS documentation [https://django-cms.readthedocs.org/en/latest/basic_reference/configuration.html#std:setting-CMS_PLACEHOLDER_CONF] for details about these settings with the exception
of the dictionary glossary. This latter setting is special to djangocms-cascade: It gives
the placeholder the ability to behave like a plugin for the Cascade app. Remember, each
djangocms-cascade plugin stores all of its settings inside a Python dictionary which is
serialized into a single database field. By having a placeholder behaving like a plugin, here this
so named glossary is emulated using an additional entry inside the setting
CMS_PLACEHOLDER_CONF, and it should:

	include all the settings a child plugin would expect from a real container plugin

	reflect how hard coded container was defined (e.g. whether it is fluid or not)

Nested Columns and Rows

One of the great features of Bootstrap is the ability to nest Rows inside Columns. These nested Rows
then can contain Columns of 2nd level order. A quick example:

<div class="container">
 <div class="row">
 <div class="col-md-3">
 Left column
 </div>
 <div class="col-md-9">
 <div class="row">
 <div class="col-md-6">
 Left nested column
 </div>
 <div class="col-md-6">
 Right nested column
 </div>
 </div>
 </div>
 </div>
</div>

rendered, it would look like:

[image: nested-rows]

If a responsive image shall be placed inside a column, we must estimate the width of this image, so
that when rendered, it fits exactly into that column. We want easy-thumbnails [https://github.com/SmileyChris/easy-thumbnails] to resize our images
to the columns width and not having the browser to up- or down-scale them.

Therefore djangocms-cascade keeps track of all the breakpoints and the chosen column widths.
For simplicity, this example only uses the breakpoint “medium”. The default Boostrap settings for
this width is 992 pixels. Doing simple math, the outer left column widths gives
3 / 12 * 992 = 248 pixels. Hence, adding a responsive image to that column means, that
easy-thumnails automatically resizes it to a width of 248 pixels.

To calculate the width of the nested columns, first evaluate the width of the outer right column,
which is 9 / 12 * 992 = 744 pixels. Then this width is subdivided again, using the the width of the
nested columns, which is 6 / 12 * 744 = 372 pixels.

These calculations are always performed recursively for all nested column and for all available
breakpoints.

Warning

As the name implies, a container marked as fluid, does not specify a fixed width.
Hence instead of the inner width, the container’s outer width is used as its maximum. For the
large media query (with a browser width of 1200 pixels or more), the maximum width is limited
to 1980 pixels.

Other Bootstrap3 specific Plugins

	HTML5 <picture> and the new elements
	Adaptive resizing the images
	Browser support

	Image Plugin Reference
	Image

	Image Title

	Alternative Description

	Link type

	Image Shapes

	Responsive Image Width

	Fixed Image Width

	Adapt Image Height

	Resize Options

	Picture Plugin Reference
	Adapt Picture Heights

	Adapt Picture Zoom

	Template tag for the Bootstrap3 Navbar

	Panel element

	Jumbotron

	Tab Sets

	Secondary menu

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

 	Bootstrap 3 Grid system

HTML5 <picture> and the new elements

Bootstrap’s responsive grid system, helps developers to adapt their site layout to a wide range of
devices, from smart-phones to large displays. This works fine as long as the content can adopt to
the different widths. Adding the CSS class img-responsive to an tag, resizes
that image to fit into the surrounding column. However, since images are delivered by the server
in one specific size, they either are too small and must be upscaled, resulting in an grainy image,
or are too big, resulting in a waste of bandwidth and slowing down the user experience, when surfing
over slow networks.

Adaptive resizing the images

An obvious idea would be to let the server decide, which image resolution fits best to the browsing
device. This however is bad practice. Images typically are served upon a GET-request pointing onto
a specific URL. GET-requests shall be idempotent and thus are predestined to be cached by proxies
on the way to the client. Therefore it is a very bad idea to let the client transmit its screen
width via a cookie, and deliver different images depending on this value.

Since the sever side approach doesn’t work, it is the browsers responsibility to select the
appropriate image size. An ideal adaptive image strategy should do the following:

	Images should fit the screen, regardless of their size. An adaptive strategy needs to resize the
image, so that it can resize into the current column width.

	Downloading images shall minimize the required bandwidth. Large images are enjoying greater
popularity with the advent of Retina displays, but those devices normally are connected to the
Internet using DSL rather than mobiles, which run on 3G.

	Not all images look good when squeezed onto a small display, particularly images with a lot of
detail. When displaying an image on a mobile device, you might want to crop only the interesting
part of it.

As these criteria can’t be fulfilled using the well known element,
djangocms-cascade offers two responsive variants recently added to the HTML5 standard:

One is the tag, but with the additional attributes sizes and srcset. This element
can be used as a direct replacement for .

The other is a new element named <picture>. Use this element, if the image’s shape or details
shall adopt their shape and/or details to the displaying media device. The correct terminology for
this kind of behavior is art direction [http://usecases.responsiveimages.org/#art-direction].

[image: art-direction]

But in the majority of use cases, the Bootstrap Image Plugin will work for you. Use the
Bootstrap Picture Plugin only in those few cases, where in addition to the image width,
you also want to change the aspect ratio and/or zoom factor, depending on the display’s sizes.

Using these new elements, the browser always fetches the image which best fits the current layout.
Additionally, if the browser runs on a high resolution (Retina) display, an image with double
resolution is downloaded. This results in much sharper images.

Browser support

Since Chrome 38, the element fully supports srcset and sizes [http://ericportis.com/posts/2014/srcset-sizes/]. It also supports
the <picture> element right out of the box. Here is a list of native browser support for the
picture [http://caniuse.com/#feat=picture] and the image element with attribute srcset [http://caniuse.com/#feat=srcset].

For legacy browsers, there is a JavaScript library named picturefill.js [http://scottjehl.github.io/picturefill/], which emulates the built
in behavior of these new features. But even without that library, djangocms-cascade renders
these HTML elements in a way to fall back on a sensible default image.

Image Plugin Reference

In edit mode, double clicking on an image, opens the Image Plugin editor. This editor offers the
following fields in order to adapt an image to the current layout.

[image: edit-image]

Image

Clicking on the magnifying glass opens a pop-up window from django-filer [https://github.com/stefanfoulis/django-filer] where you can choose the
appropriate image.

Image Title

This optional field shall be used to set the tag inside this HTML
element.

Alternative Description

This field shall be used to set the alt tag inside the <picture> or
element. While the editor does require this field to be filled, it is strongly recommended to add
some basic information about that picture.

Link type

Using this select box, one can choose to add an internal, or external link to the image. Please
check the appropriate section for details.

Image Shapes

These checkboxes control the four CSS classes from the Bootstrap3 framework: img-responsive,
img-rounded, img-circle and img-thumbnail. While rendering HTML, they will be added to
the element.

Here the option Responsive has a special meaning. The problem with responsive images is, that
their size depends on the media width of the device displaying the image. Therefore we can not use
the well known element with a fixed width=".." and height="..". Instead,
when rendering responsive images, the additional attributes srcset and sizes are added to
the element. The attribute srcset contains the URLs, of up to four differently scaled images.
The width of these images is determined by the maximum width of the wrapping container <div>,
normally a Bootstrap column.

Responsive Image Width

This field is only available for responsive images. If set to 100% (the default), the image will
spawn the whole column width. By setting this to a smaller value, one may group more than one image
side by side into one column.

Fixed Image Width

This field is only available for non-responsive images. Here an image size must be specified in
pixels. The image then will be rendered with a fixed width, independently of the current screen
width. Images rendered with a fixed width do not neither contain the attributes srcset nor
sizes.

Adapt Image Height

Leaving this empty (the default), keeps the natural aspect ratio of an image. By setting this to a
percentage value, the image’s height is resized to its current used width, hence setting this to
100% reshapes the image into a square. Note that this normally requires to crop the image,
see Resize Options below. Setting this value in pixels, set the image to a fixed height.

Resize Options

	Upscale image: If the original image is smaller than the desired drawing area, then the image
is upscaled. This in general leads to blurry images and should be avoided.

	Crop image: If the aspect ratio of the image and the desired drawing area do not correlate,
than the image is cropped to fit, rather than leaving white space arround it.

	With subject location: When cropping, use the red circle to locate the most important part of
the image. This is a feature of Django’s Filer.

	Optimized for Retina: Currently only available for images marked as responsive, this option
adds an images variant suitable for Retina displays.

Picture Plugin Reference

A picture is another wording for image. It offers some rarely required options when working with
images using art direction [http://usecases.responsiveimages.org/#art-direction]. By double-clicking onto a picture, its editor pops up.

[image: edit-picture]

The field Image, Image Title, Alternative Description, Link type and Resize
Options behave exactly the same as for the Image Plugin.

Beware that Pictures always are considered as responsive, and they always spawn to the whole width
of the wrapping element, using the CSS style width: 100%. They make the most sense for large
images extending over a large area. Therefore it is not possible to specify a width for a picture.

Adapt Picture Heights

Depending on the current screen’s width, one may set different heights for an image. This is useful
in order to adopt the aspect ratio of an image, when switching from desktops to mobile devices.
Normally, one should use a fixed height in pixels here, but when specifying the heights in percent,
these heights are considered relative to the current image height.

Adapt Picture Zoom

Depending on the current screen’s width, one may set different zoom levels for an image. This is
useful for keeping the level of detail constant, at the cost of cropping more of the image’s
margins.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

 	Bootstrap 3 Grid system

Template tag for the Bootstrap3 Navbar

Warning

This template tag is now deprecated. It’s functionality has been
split off into a new project that can be found here:
Django CMS Bootstrap 3 [https://github.com/jrief/djangocms-bootstrap3].

Although it’s not derived from the CascadeElement class, this Django app is shipped with a
template tag to render the main menu inside a Bootstrap Navbar [http://getbootstrap.com/components/#navbar]. This tag is named main_menu
and shall be used instead of show_menu, as shipped with the DjangoCMS menu app.

Render a Navbar according to the Bootstrap3 guide:

{% load bootstrap3_tags %}
...
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-collapse">
 Toggle navigation

 </button>
 Project name
 </div>
 <div class="collapse navbar-collapse">
 <ul class="nav navbar-nav">{% main_menu %}
 </div>
 </div>
</div>

Assume, the page hierarchy in DjangoCMS is set up like this:

[image: page-hierarchy]

then in the front-end, the navigation bar will be rendered as

[image: navbar]

on computer displays, and as

[image: navbar-mobile]

on mobile devices.

Note

Bootstrap3 does not support “hover”, since this event can’t be handled by touch screens.
Therefore the client has to click on the menu item, rather than moving the mouse cursor
over it. In order to make CMS pages with children selectable, those menu items are
duplicated. For instance, clicking on Dropdown in the Navbar, just opens the pull-down
menu. Here the menu item for the page named “Dropdown” is rendered again. Clicking on this
item, finally loads that page from the CMS.

Note

Bootstrap3 does not support nested menus, because they wouldn’t be usable on mobile
devices. Therefore the template tag main_menu renders only one level of children, no
matter how deep the page hierarchy is in DjangoCMS.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

 	Bootstrap 3 Grid system

Panel element

Bootstrap is shipped with CSS helpers to facilitate the creation of Panels [http://getbootstrap.com/components/#panels]. In djangocms-cascade
these panels can be added to any placholder. In the context menu of a placeholder, select Panel
below the section Bootstrap and chose the style. The panel heading and footer are optional.
As body, the panel element accepts other plugins, normally this is a Text plugin.

Jumbotron

Bootstrap is shipped with CSS helpers to facilitate the creation of a Jumbotron [http://getbootstrap.com/components/#jumbotron], sometimes also
named “Hero” element. In djangocms-cascade, such a Jumbotron plugin can be added anywhere,
even as the root element of a placeholder, in other words, even outside of a Bootstrap Container
plugin. The latter configuration is specially useful for images, which shall extend over the full
width of the web page.

If used outside a Bootstrap Container, we first must configure the allowed breakpoints. This is
the same behaviour as for the Container plugin. Then we optionally can chose an image or a
background color, it’s size, attachment, position and repetitions. For more details read
this article [https://css-tricks.com/almanac/properties/b/background-image/] on how to configure background images using pure CSS.

A Jumbotron without any content has a default height of 96 pixels, which is 48 pixels for the
top- and bottom paddings, each. These values are given by the Bootstrap 3 framework.

To increase the height of a Jumbotron you have two choices. The simpler one is to add some
content to the Jumbotron plugin which then increases it’s height. Another, is to explicitly
to set other padding of the Jumbotron plugin.

Tab Sets

Bootstrap is shipped with CSS helpers to facilitate the creation of Tabs [http://getbootstrap.com/javascript/#tabs]. In djangocms-cascade,
such a Tab plugin can be added anywhere inside columns or rows.

In the context menu of a placeholder, select Tab Set. Depending on the chosen number of
children, it will add as many Tab Pane**s. Each **Tab Pane has a Title field, its content is
displayed in the tab. Below a Tab Pane you are free to add whatever you want.

Secondary menu

Warning

This plugin is experimental. It may disappear or be replaced. Use it at your own risk!

Often there is a need to add secondary menus at arbitrary locations. The Secondary menu plugin
can be used in any placeholder to display links onto child pages of a CMS page. Currently only
pages marked as Soft Root with a defined Page Id are allowed as parent of such a secondary
menu.

Note

This plugins reqires the template tag main_menu_below_id which is shipped with
djangocms-bootstrap3 [https://github.com/jrief/djangocms-bootstrap3]

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

Section Bookmarks

If you have a long page, and you want to allow the visitors of your site to quickly navigate to
different sections, then you can use bookmarks and create links to the different sections of any
HTML page.

When a user clicks on a bookmark link, then that page will load as usual but will scroll down
immediately, so that the bookmark is at the very top of the page. Bookmarks are also known as
anchors. They can be added to any HTML element using the attribute id. For example:

<section id="unique-identifier-for-that-page">

For obvious reasons, this identifier must be unambiguous, otherwise the browser does not know
where to jump to. Therefore djangocms-cascade enforces the uniqueness of all bookmarks used on
each CMS page.

Configuration

The HTML standard allows the usage of the id attribute on any element, but in practice it only
makes sense on <section>, <article> and the heading elements <h1>...``<h6>``.
Cascade by default is configured to allow bookmarks on the SimpleWrapperPlugin and the
HeadingPlugin. This can be overridden in the project’s configuration settings using:

CMSPLUGIN_CASCADE = {
 ...
 'plugins_with_bookmark': [list-of-plugins],
 ...
}

Hashbang Mode

Links onto bookmarks do not work properly in hashbang mode. Depending on the HTML settings, you may
have to prefix them with / or !. Therefore djangocms-cascade offers a configuration
directive:

CMSPLUGIN_CASCADE = {
 ...
 'bookmark_prefix': '/',
 ...
}

which automatically prefixes the used bookmark.

Usage

When editing a plugin that is eligible for adding a bookmark, an extra input field is shown:

[image: section-bookmark]

You may add any identifier to this field, as long as it is unique on that page. Otherwise the
plugin’s editor will be reject the given inputs, while saving.

Hyperlinking to a Bookmark

When editing a TextLink, BootstrapButton or the link fields inside the Image or
Picture plugins, the user gets an additional drop-down menu to choose one of the bookmarks for
the given page. This additional drop-down is only available if the Link is of type CMS page.

[image: link-bookmark]

If no bookmarks have been associated with the chosen CMS page, the drop-down menu displays only
Page root, which is the default.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

Segmentation of the DOM

The SegmentationPlugin allows to personalize the DOM structure, depending on the context used to
render the corresponding page. Since djangoCMS always uses a RequestContext [https://docs.djangoproject.com/en/1.8/ref/templates/api/#django.template.RequestContext] while rendering its
pages, we always have access onto the request object. Some use cases are:

	Depending on the user, show a different portion of the DOM, if he is a certain user or not logged
in at all.

	Show different parts of the DOM, depending on the browsers estimated geolocation. Useful to
render different content depending on the visitors country.

	Show different parts of the DOM, depending on the supplied marketing channel.

	Show different parts of the DOM, depending on the content in the session objects from previous
visits of the users.

	Segment visitors into different groups used for A/B-testing.

Configuration

The SegmentationPlugin must be activated separately on top of other djangocms-cascade
plugins. In settings.py, add to

INSTALLED_APPS = (
 ...
 'cmsplugin_cascade',
 'cmsplugin_cascade.segmentation',
 ...
)

Then, depending on what kind of data shall be emulated, add a list of two-tuples to the
configuration settings CMSPLUGIN_CASCADE['segmentation_mixins']. The first entry of each two-tuple
specifies the mixin class added the the proxy model for the SegmentationPlugin. The second entry
specifies the mixin class added the the model admin class for the SegmentationPlugin.

this entry is optional:
CMSPLUGIN_CASCADE = {
 ...
 'segmentation_mixins': (
 ('cmsplugin_cascade.segmentation.mixins.EmulateUserModelMixin', 'cmsplugin_cascade.segmentation.mixins.EmulateUserAdminMixin',), # the default
 # other segmentation plugin classes
),
 ...
}

Usage

When editing djangoCMS plugins in Structure mode, below the section Generic a new plugin
type appears, named Segment.

[image: segment-plugin]

This plugin now behaves as an if block, which is rendered only, if the specified condition
evaluates to true. The syntax used to specify the condition, is the same as used in the Django
template language. Therefore it is possible to evaluate against more than one condition and combine
them with and, or and not as described in boolean operators [https://docs.djangoproject.com/en/dev/ref/templates/builtins/#boolean-operators] in the Django docs

Immediately below a segmentation block using the condition tag if, it is possible to use the
tags elif or else. This kind of conditional blocks is well known to Python programmers.

Note, that when rendering pages in djangoCMS, a RequestContext [https://docs.djangoproject.com/en/1.8/ref/templates/api/#django.template.RequestContext]- rather than a Context-object is used.
This RequestContext is populated by the user object if 'django.contrib.auth.context_processors.auth'
is added to your settings.py TEMPLATE_CONTEXT_PROCESSORS. This therefore is a prerequisite
when the Segmentation plugin evaluates conditions such as user.username == "john".

Emulating Users

As of version 0.5.0, in djangocms-cascade a staff user or administrator can emulate the
currently logged in user. If this plugin is activated, in the CMS toolbar a new menu tag appears
named “Segmentation”. Here a staff user can select another user. All evaluation conditions then
evaluate against this selected user, instead of the currently logged in user.

It is quite simple to add other overriding emulations. Have a look at the class
cmsplugin_cascade.segmentation.mixins.EmulateUserMixin. This class then has to be added to
your configuration settings CMSPLUGIN_CASCADE_SEGMENTATION_MIXINS. It then overrides the
evaluation conditions and the toolbar menu.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

Working with sharable fields

Sometime you’d want to remember sizes, links or any other options for rendering a plugin instance
across the project. In order to not have to do this job for each managed entity, you can remember
these settings using a name of your choice, controllable in a special section of the administration
backend.

Now, whenever someone adds a new instance using this plugin, a select box with these remembered
settings appears. He then can choose from one of the remembered settings, which frees him to
reenter all the values.

Configure a Cascade Plugins to optionally share some fields

Configuring a plugin to share specific fields with other plugins of the same type is very easy.
In the projects settings.py, assure that 'cmsplugin_cascade.sharable' is part of your
INSTALLED_APPS.

Then add a dictionary of Cascade plugins, with a list of fields which shall be sharable. For
example, with this settings, the image plugin can be configured to share its sizes and rendering
options among each other.

CMSPLUGIN_CASCADE = {
 ...
 'plugins_with_sharables': {
 'BootstrapImagePlugin': ('image-shapes', 'image-width-responsive', 'image-width-fixed', 'image-height', 'resize-options',),
 },
 ...
}

Control some named settings

Whenever a plugin is configured to allow to share fields, at the bottom of the plugin editor a
special field appears:

[image: remember-settings]

By activating the checkbox, adding an arbitrary name next to it and saving the plugin, an entity
of sharable fields is saved in the database. Now, whenever someone starts to edit a plugin of this
type, a select box appears on the top of the editor:

[image: use-shared-settings]

By choosing a previously named shared settings, the configured fields are disabled for input and
replaced by their shared field’s counterparts.

In order to edit these shared fields in the administration backend, one must access
Home › Cmsplugin_cascade › Shared between Plugins. By choosing a named shared setting, one can
enter into the shared field’s editor. This editor auto adopts to the fields declared as shared,
hence will change from entity to entity. For the above example, it may look like this:

[image: edit-shared-fields]

In this editor one can change these shared settings globally, for all plugin instances where this
named shared settings have been applied to.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

Customize CSS classes and inline styles

Plugins shipped with djangocms-cascade offer a basic set of CSS classes as declared by the
chosen CSS framework. These offered classes normally do not fulfill the requirements for real world
sites.

While djangocms-cascade is easily expendable, it would be overkill to re-implement the available
plugins, just to add an extra field for a customized CSS class or an extra inline style. For that
purpose, one can add a set of potential CSS classes and potential CSS inline styles for Cascade
plugins, enabled for this feature. Moreover, this feature can be adopted individually on a per-site
base.

Configure a Cascade plugins to accept extra fields

It is possible to configure each plugin to accept an additional ID tag, one ore more CSS classes or
some inline styles. By default the plugins: BootstrapButtonPlugin, BootstrapRowPlugin,
BootstrapJumbotronPlugin and the SimpleWrapperPlugin are eligible for accepting extra styles.
Additionally, by default the user can override the margins of the HeadingPlugin and the
HorizontalRulePlugin.

To override these defaults, first assure that 'cmsplugin_cascade.extra_fields' is part of
your INSTALLED_APPS. Then add a dictionary of Cascade plugins, which shall be extendible
to the project’s settings.py, for instance:

CMSPLUGIN_CASCADE = {
 ...
 'plugins_with_extra_fields': {
 'BootstrapButtonPlugin': PluginExtraFieldsConfig(),
 'BootstrapRowPlugin': PluginExtraFieldsConfig(),
 'BootstrapJumbotronPlugin': PluginExtraFieldsConfig(inline_styles={
 'extra_fields:Paddings': ['padding-top', 'padding-bottom'],
 'extra_units:Paddings': 'px,em'}),
 'SimpleWrapperPlugin': PluginExtraFieldsConfig(),
 'HeadingPlugin': PluginExtraFieldsConfig(inline_styles={
 'extra_fields:Paddings': ['margin-top', 'margin-right', 'margin-bottom', 'margin-left'],
 'extra_units:Paddings': 'px,em'}, allow_override=False),
 'HorizontalRulePlugin': PluginExtraFieldsConfig(inline_styles={
 'extra_fields:Paddings': ['margin-top', 'margin-bottom'],
 'extra_units:Paddings': 'px,em'}, allow_override=False),
 },
 ...
}

Here the class PluginExtraFieldsConfig can be used to fine-tune which extra fields can be
set while editing the plugin. Assigning that class without arguments to a plugin, allows us to
specify the extra fields using the Django administration backend at:

Home › django CMS Cascade › Custom CSS classes and styles

Here the site administrator can specify for each concrete plugin, which extra CSS classes, ID tags
and extra inline styles shall be used.

If we use PluginExtraFieldsConfig(allow_override=False), then we can not override the
configuration using the administration backend, but must specify all settings in it’s constructor:

	
class cmsplugin_cascade.extra_fields.config.PluginExtraFieldsConfig(allow_id_tag=False, css_classes=None, inline_styles=None, allow_override=True)

	Each Cascade Plugin can be configured to accept extra fields, such as an ID tag, one or more
CSS classes or inlines styles. It is possible to configure these fields globally using an
instance of this class, or to configure them on a per site base using the appropriate
admin’s backend interface at:

Start › django CMS Cascade › Custom CSS classes and styles › PluginExtraFields

	Parameters:	
	allow_id_tag – If True, allows to set the id attribute in HTML elements.

	css_classes – A dictionary containing:
class_names a comma separated string of allowed class names.
multiple a Boolean indicating if more multiple classes are allowed concurrently.

	inline_styles – A dictionary containing:

	allow_override – If True, allows to override this configuration using the admin’s

backend interface.

Enable extra fields through the administration backend

To enable this feature, in the administration backend navigate to

Home › django CMS Cascade › Custom CSS classes and styles and click onto the button named
Add Custom CSS classes styles.

From the field named “Plugin Name”, select one of the available plugins, for example
Bootstrap Simple Wrapper. Then, from the field named “Site”, select the current site.

[image: customize-styles]

Allow ID

With “Allow id tag” enabled, an extra field will appear on the named plugin editor. There a user
can add any arbitrary name which will be rendered as id="any_name" for the corresponding plugin
instance.

CSS classes

In the field named “CSS class names”, the administrator may specify arbitrary CSS classes separated
by commas. One of these CSS classes then can be added to the corresponding Cascade plugin. If
more than one CSS class shall be addable concurrently, activate the checkbox named “Allow multiple”.

CSS inline styles

The administrator may activate all kinds of CSS inline styles by clicking on the named checkbox. For
settings describing distances, additionally specify the allowed units to be used.

Now, if a user opens the corresponding plugin inside the Structure View, he will see an extra
select field to choose the CSS class and some input fields to enter say, extra margins, heights or
whatever has been activated.

Use it rarely, use it wise

Adding too many styling fields to a plugin can mess up any web project. Therefore be advised to use
this feature rarely and wise. If many people have write access to plugins, set extra permissions on
this table, in order to not mess things up. For instance, it rarely makes sense to activate
min-width, width and max-width.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

Chose an alternative rendering template

Sometimes you must render a plugin with a slightly different template, other than the given default.
A possible solution is to inherit from this template and override render_template. This however
adds another plugin to the list of registered CMS plugins.

A simpler solution to solve this problem is to allow a plugin to be rendered with a template out of
a set of alternatives.

Change the path for template lookups

Some Bootstrap Plugins are shipped with templates, which are optimized to be rendered by Angular-UI [http://angular-ui.github.io/bootstrap/versioned-docs/0.13.4/]
rather than the default jQuery. These alternative templates are located in the folder
cascade/bootstrap3/angular-ui. If your project uses AngularJS instead of jQuery, then configure
the lookup path in settings.py with

CMSPLUGIN_CASCADE = {
 ...
 'bootstrap3': {
 ...
 'template_basedir': 'angular-ui',
 },
}

This lookup path is applied only to the Plugin’s field render_template prepared for it. Such a
template contains the placeholder {}, which is expanded to the configured template_basedir.

For instance, the CarouselPlugin defines its render_template such as:

class CarouselPlugin(BootstrapPluginBase):
 ...
 render_template = 'cascade/bootstrap3/{}/carousel.html'
 ...

Configure Cascade Plugins to be rendered using alternative templates

All plugins which offer more than one rendering template, shall be added in the projects
settings.py to the dictionary CMSPLUGIN_CASCADE['plugins_with_extra_render_templates'].
Each item in this dictionary consists of a key naming the plugin and a value containing a list of
two-tuples. The first element of this two-tuple must be the templates filename, while the second
element shall contain an arbitrary name to identify that template.

Example:

CMSPLUGIN_CASCADE = {
 ...
 'plugins_with_extra_render_templates': {
 'TextLinkPlugin': (
 ('cascade/link/text-link.html', _("default")),
 ('cascade/link/text-link-linebreak.html', _("with linebreak")),
)
 },
 ...
}

Usage

When editing a djangoCMS plugins with alternative rendering templates, the plugin editor
adds a select box containing alternative rendering templates. Chose one other than the default,
and the plugin will be rendered using this other template.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

The CMS Clipboard

DjangoCMS offers a Clipboard where one can copy or cut and add a subtree of plugins to the DOM.
This Clipboard is very handy when copying plugins from one placeholder to another one, or to another
CMS page. In version 0.7.2 djangocms-cascade extended the functionality of this clipboard, so
that the content of the CMS clipboard can be persited to – and restored from the database. This
allows the site-administrator to prepare a toolset of plugin-trees, which can be inserted anywhere
at any time.

Persisting the Clipboard

In the context menu of a CMS plugin, use Cut or Copy to move a plugin together with its
children to the CMS clipboard. In Edit Mode this clipboard is available from the primary menu
item within the CMS toolbar. From this clipboard, the copy plugins can be dragged and dropped to
any CMS placeholder which is allowed to accept the root node.

Since the content of the clipboard is overridden by every operation which cuts or copies a tree of
plugins, djangocms-cascade offers some functionality to persist the clipboard’s content. To do
this, locate Persited Clipboard Content in Django’s administration backend.

[image: persist-clipboard]

The Identifier field is used to give a unique name to the persited clipboard entity.

The Save button fetches the content from the CMS clipboard and persists it.

The Restore button replaces the content of the CMS clipboard with the current persisted entity.
This is the opposite operation of Save.

Since the clipboard content is serialized using JSON, the site administrator can grab and paste it
into another site using djangocms-cascade, if persisting clipboards are enabled.

Configuration

Persisting the clipboards content must be configured in the projects settings.py:

INSTALLED_APPS = (
 ...
 'cmsplugin_cascade',
 'cmsplugin_cascade.clipboard',
 ...
)

Caveats

Only CMS plugins from the Cascade eco-system are eligible to be used for persisting. This is because
they already use a JSON representation of their content. The only exception is the TextPlugin,
since djangocms-cascade added some serialization code.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

Extending Cascade

All Cascade plugins are derived from the same base class CascadeModelBase, which stores all its
model fields inside a dictionary, serialized as JSON string in the database. This makes it much
easier to extend the Cascade eco-system, since no database migration is required when adding a new,
or extending plugins from this project.

The database model CascadeModelBase stores all the plugin settings in a single JSON field named
glossary. This in practice behaves like a Django context, but in order to avoid confusion with
the latter, it has been named “glossary”.

Note

Custom Cascade plugins should set the app_label attribute (see
below). This is important so migrations for the proxy models generated by
Cascade are created in the correct app.

If this attribute is not set, Cascade will default to the left-most
part of the plugin’s module path. So if your plugin lives in
myapp.cascadeplugins, Cascade will use myapp as the app label.
We recommend that you always set app_label explicitly.

Simple Example

This plugin is very simple and just renders static content which has been declared in the template.

from cms.plugin_pool import plugin_pool
from cmsplugin_cascade.plugin_base import CascadePluginBase

class StylishPlugin(CascadePluginBase):
 name = 'Stylish Element'
 render_template = 'myapp/cascade/stylish-element.html'

plugin_pool.register_plugin(StylishPlugin)

If the editor form pops up for this plugin, a dumb message appears: “There are no further settings
for this plugin”. This is because no editable fields have been added to that plugin yet.

Customize Stored Data

In order to make the plugin remember its settings and other optional data, the programmer must add
a list of special form fields to its plugin. These fields then are used to auto-generate the editor
for this DjangoCMS plugin.

Each of those form fields handle a special field value, or in some cases, a list of field values.
They all require a widget, which is used when rendering the editors form.

Lets add a simple selector to choose between a red and a green color. Do this by adding a
PartialFormField to a member list named glossary_fields.

from django.forms import widgets
from cmsplugin_cascade.plugin_base import CascadePluginBase, PartialFormField

class StylishPlugin(CascadePluginBase):
 ...
 glossary_fields = (
 PartialFormField('color',
 widgets.Select(choices=(('red', 'Red'), ('green', 'Green'),)),
 label="Element's Color",
 initial='red',
 help_text="Specify the color of the DOM element."
),
 # more PartialFormField objects
)

In the plugin’s editor, the form now pops up with a single select box, where the user can choose
between a red and a green element.

A PartialFormField accepts five arguments:

	The name of the field. It must be unique in the given list of glossary_fields.

	The widget. This can be a built-in Django widget or any valid widget derived from it.

	The label used to describe the field. If omitted, the name of the partial form field is used.

	An optional initial value to be used with Radio- or Select fields.

	An optional help_text to describe the field’s purpose.

Widgets for a Partial Form Field

For single text fields or select boxes, Django’s built-in widgets, such as widgets.TextInput
or widgets.RadioSelect can be used. Sometimes these simple widgets are not enough, therefore
some special input widgets have been prepared to be used with DjangoCMS-Cascade. They are all
part of the module cmsplugin_cascade.widgets.

	MultipleTextInputWidget:

		Use this widget to group a list of text input fields together. This for instance is used, to
encapsulate all inline styles into one JSON object.

	NumberInputWidget:

		The same as Django’s TextInput-widget, but doing field validation. This checks if the
entered input data is a valid number.

	MultipleInlineStylesWidget:

		The same as the MultipleTextInputWidget, but doing field validation. This checks if the
entered input data ends with px or em.

Overriding the Form

For the plugin editor, djangocms-cascade automatically creates a form for each
PartialFormField in the list of glossary_fields. Sometimes however, you might need more
control over the fields displayed in the editor, versus the fields stored inside the glossary.

Similar to the Django’s admin.ModelAdmin, this can be achieved by overriding the plugins form
element. Such a customized form can add as many fields as required, while the controlled glossary
contains a compact summary.

To override the plugins form, add a member form to your plugin. This member variable shall refer
to a customized form derived from forms.models.ModelForm. For further details about how to use
this feature, refer to the supplied implementations.

Overriding the Model

Since all djangocms-cascade plugins store their data in a JSON-serializable field, there rarely
is a need to add another database field to the common models CascadeElement and/or
SharableCascadeElement and thus no need for database migrations.

However, quite often there is a need to add or override the methods for these models. Therefore each
Cascade plugin creates its own proxy model [https://docs.djangoproject.com/en/dev/topics/db/models/#proxy-models] on the fly. These models are derived from
CascadeElement and/or SharableCascadeElement and named like the plugin class, with the
suffix Model. By default, their behavior is the same as for their parent model classes.

To extend this behavior, the author of a plugin may declare a tuple of mixin classes, which are
injected during the creation of the proxy model. Example:

class MySpecialPropertyMixin(object):
 def processed_value(self):
 value = self.glossary.get('field_name')
 # process value
 return value

class MySpecialPlugin(LinkPluginBase):
 module = 'My Module'
 name = 'My special Plugin'
 model_mixins = (MySpecialPropertyMixin,)
 render_template = 'my_module/my_special_plugin.html'
 glossary_fields = (
 PartialFormField('field_name',
 widgets.TextInput(),
),
 # other partial form fields
)
 ...

The proxy model created for this plugin class, now contains the extra method content(), which
for instance may be accessed during template rendering.

templates/my_module/my_special_plugin.html:

<div>{{ instance.processed_value }}</div>

Needless to say, that you can’t add any extra database fields to the class named
MySpecialPropertyMixin, since the corresponding model class is marked as proxy.

Plugin Attribute Reference

CascadePluginBase is derived from CMSPluginBase, so all CMSPluginBase attributes [https://django-cms.readthedocs.org/en/develop/extending_cms/custom_plugins.html#plugin-attribute-reference] can
also be overridden by plugins derived from CascadePluginBase. Please refer to their
documentation for details.

Additionally BootstrapPluginBase allows the following attributes:

	name:	This name is shown in the pull down menu in structure view. There is not default value.

	app_label:	The app_label to use on generated proxy models. This should usually be the
same as the app_label of the app that defines the plugin.

	tag_type:	A HTML element into which this plugin is wrapped. Generic templates can render their
content into any ``tag_type. Specialized rendering templates usually have a hard coded tag
type, then this attribute can be omitted.

	require_parent:	Default: True. This differs from CMSPluginBase.

Is it required that this plugin is a child of another plugin? Otherwise the plugin can be added
to any placeholder.

	parent_classes:	Default: None.

A list of Plugin Class Names. If this is set, the plugin may only be added to plugins listed
here.

	allow_children:	Default: True. This differs from CMSPluginBase.

Can this plugin have child plugins? Or can other plugins be placed inside this plugin?

	child_classes:	Default: A list of plugins, which are allowed as children of this plugin. This differs from
CMSPluginBase, where this attribute is None.

Do not override this attribute. DjangoCMS-Cascade automatically generates a list of allowed
children plugins, by evaluating the list parent_classes from the other plugins in the pool.

Plugins, which are part of the plugin pool, but which do not specify their parents using the
list parent_classes, may be added as children to the current plugin by adding them to the
attribute generic_child_classes.

	generic_child_classes:

		Default: None.

A list of plugins which shall be added as children to a plugin, but which themselves do not
declare this plugin in their parent_classes.

	glossary_fields:

		Default: None

A list of PartialFormField‘s. See the documentation above for details.

	default_css_class:

		Default: None.

A CSS class which is always added to the wrapping DOM element.

	default_inline_styles:

		Default: None.

A dictionary of inline styles, which is always added to the wrapping DOM element.

	get_identifier:	This is a classmethod, which can be added to a plugin to give it a meaningful name.

Its signature is:

@classmethod
def get_identifier(cls, obj):
 return 'A plugin name'

This method shall be used to name the plugin in structured view.

	form:	Override the form used by the plugin editor. This must be a class derived from
forms.models.ModelForm.

	model_mixins:	Tuple of mixin classes, with additional methods to be added the auto-generated proxy model
for the given plugin class.

Check section “Overriding the Model” for a detailed explanation.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

Generic Plugins

Cascade is shipped with a few plugins, which can be used independently of the underlying CSS
framework. To avoid duplication, they are bundled into the section Generic and are available
by default in the placeholders context menu.

All these plugins qualify as plugins with extra fields, which means that they can be configured
by the site administrator to accept additional CSS styles and classes.

SimpleWrapperPlugin

Use this plugin to add a wrapping element around a group of other plugins. Currently these HTML
elements can be used as wrapper: <div>, , <section>, <article>. There is one
special wrapper named naked. It embeds its children only logically, without actually embedding
them into any HTML element.

HorizontalRulePlugin

This plugins adds a horizontal rule <hr> to the DOM. It is suggested to enable the
margin-top and margin-bottom CSS styles, so that the ruler can be positioned
appropriately.

HeadingPlugin

This plugins adds a text heading <h1>...``<h6>`` to the DOM. Although simple headings can be
achieved with the TextPlugin, there they can’t be styled using special CSS classes or styles.
Here the HeadingPlugin can be used, since any allowed CSS class or style can be added.

CustomSnippetPlugin

Not every collection of DOM elements can be composed using the Cascade plugin system. Sometimes one
might want to add a simple HTML snippet. Altough it is quite simple to create a customized plugin
yourself, an easier approach to just render an arbitrary HTML snippet, is to use the
CustomSnippetPlugin. This can be achieved by adding the customized template to the project’s
settings.py:

CMSPLUGIN_CASCADE = {
 # other settings
 'plugins_with_extra_render_templates': {
 'CustomSnippetPlugin': [
 ('myproject/snippets/custom-template.html', "Custom Template Identifier"),
 # other tuples
],
 },
}

Now, when editing the page, a plugin named Custom Snippet appears in the Generic section in
the plugin’s dropdown menu. This plugin then offers a select element, where the site editor then can
chose between the configured templates.

Adding children to a CustomSnippetPlugin

It is even possible to add children to the CustomSnippetPlugin. Simple add these templatetag_s
to the customized template, and all plugins which are children of the CustomSnippetPlugin will
be rendered as well.

{% load cms_tags %}
<wrapping-element>
{% for plugin in instance.child_plugin_instances %}
 {% render_plugin plugin %}
{% endfor %}
</wrapping-element>

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	djangocms-cascade 0.10.1 documentation

Release History

0.10.1

	Fix #185: Undefined variables in case of uncaught exception.

0.10.0

	Added BootstrapJumbotronPlugin. This for instance can be used to place background images
extending over the full width of a page using a parallax effect.

	Experimental: Utility to manage font icons, so that symbol icons can be used anywhere in any
size.

	CMSPLUGIN_CASCADE['plugins_with_extra_fields'] is a dict instead of a tuple. This allows
the site administrator to enable extra styles globally and without adding them using the
administration backend.

	Tuples in CMSPLUGIN_CASCADE['bootstrap3']['breakpoints'] now accepts five parameters instead
of four. The 5th parameter specifies the image width for fluid containers and the Jumbotron
plugin.

	The plugin’s change form now can add an introduction and a footnote HTML. This is useful to add
some explanation text.

0.9.4

	Added function .utils.validate_link to check if submitted link information is valid.

0.9.3

	Fixed: enabled subject_location did not work properly for ImagePlugin and PicturePlugin.

	Fixed indention in admin interface for extra fields model.

	Moved template ‘testing.html’ -> ‘cascade/testing.html’.

	Added German translations.

0.9.2

	Restore global jQuery object (required by the Select2 widget) in explicit file instead of doing
it implicitly in linkpluginbase.js

0.9.1

	Prepared for django-1.10

	Upgrade ring.js to version 2.1.0

	In LinkPlugin, forgive if sub-dict link was missing in glossary

	Fixed HTML escaping problem in Bootstrap Carousel

	Increase height of Select2 fields

0.9.0

	Compatible with django-cms version 3.3.0

	Converted SharableCascadeElement into a proxy model, sharing the same data as model
CascadeElement. This allows adding plugins to CMSPLUGIN_CASCADE['plugins_with_sharables']
without requiring a data-migration. (Note: A migration merges the former two models, so
please backup your database before upgrading!)

	Add support for Section Bookmarks.

	Fixed: Do not set width/height on -element inside a <picture>, if wrapping container is fluid.

	Replaced configuration settings CMSPLUGIN_CASCADE_LINKPLUGIN_CLASSES against
CMSPLUGIN_CASCADE['link_plugin_classes'] for better consistency.

Note: If you want to continue using django-CMS 3.2 please use djangocms-cascade 0.8.5.

0.8.5

	Dropped support for Python-2.6.

0.8.4

	Fixed a regression in “Restore from clipboard”.

	Fixed TextLinkPlugin to work again as child of TextPlugin.

	ContainerPlugin can only be added below a placeholder.

	Prepared demo to work with Django-1.10.

	Plugins marked as “transparent” are only allowed as parents,
if they allow children.

0.8.3

	Added CustomSnippetPlugin. It allows to add arbitrary custom templates to the project.

	Fixed #160: Error copying Carousel plugin

	Plugins marked as “transparent” can be parents of everybody.

	BootstrapPanelPlugin now accepts inline CSS styles.

0.8.2

	Cascade does not create migrations for proxy models anymore. This created major problems if
Cascade components have been switched on and off. All existing migrations of proxy models have
been removed from the migration files.

	Fixed: Response of more than one entry on non unique clipboards.

	Added cmsplugin_cascade.models.SortableInlineCascadeElement which can be used for
keeping sorted inline elements.

	cmsplugin_cascade.bootstrap3.gallery.BootstrapGalleryPlugin can sort its images.

0.8.1

	Hotfix: removed invalid dependency in migration 0007.

0.8.0

	Compatible with Django-1.9

	Fixed #133: BootstrapPanelPlugin now supports custom CSS classes.

	Fixed #132: Carousel Slide plugin with different form.

	Fixed migration problems for proxy models outside Cascade.

	Replaced SelectMultiple against CheckboxSelectMultiple in admin for extra fields.

	Removed SegmentationAdmin from admin backend.

	Disallow whitespace in CSS attributes.

	Require django-reversion 1.10.1 or newer.

	Require django-polymorphic 0.9.1 or newer.

	Require django-filer 1.1.1 or newer.

	Require django-treebeard 4.0 or newer.

	Require django-sekizai 0.9.0 or newer.

0.7.3

	Use the outer width for fluid containers. This allows us to add images and carousels which extend
the the browser’s edges.

	Fixed #132: Carousel Slide plugin different form.

	Fixed #133: BootstrapPanelPlugin does not support custom CSS classes.

	Fixed #134: More plugins can be children of the SimpleWrapperPlugin. This allows us to be more
flexible when building the DOM tree.

	BootstrapContainerPlugin now by default accepts extra inline styles and CSS classes.

0.7.2

	Add a possibility to prefix Cascade plugins with a symbol of your choice, to avoid confusion
if the same name has been used by another plugin.

	All Bootstrap plugins can override their templates globally though a configuration settings
variable. Usefule to switch between jQuery and AngularJS versions of a widget.

	Added TabSet and TabPanel plugins.

	It is possible to persist the content of the clipboard in the database, retrieve and export
it as JSON to be reimported on an unrelated site.

0.7.1

	Added a HeadingPlugin to add single text headings independently of the HTML TextEditorPlugin.

0.7.0

Cleanup release, removing a lot of legacy code. This adds some incompatibilities to previous
versions:

	Instead of half o dozen of configuration directives, now one Python dict is used. Therefore
check your settings.py for configurations starting with CMSPLUGIN_CASCADE_....

	Tested with Django-1.8. Support for version 1.7 and lower has been dropped.

	Tested with djangoCMS version 3.2. Support for version 3.0 and lower has been dropped.

	Tested with django-select2 version 5.2. Support for version 4 has been dropped.

	The demo project now uses SASS instead of plain CSS, but SASS is not a requirement during normal
development.

0.6.2

	In Segment: A condition raising a TemplateSyntaxError now renders that error inside a HTML
comment. This is useful for debugging non working conditions.

	In Segment: An alternative AdminModel to UserAdmin, using a callable instead of a model field,
now works.

	In Segment: It is possible to use segmentation_list_display = (list-of-fields) in an
alternative AdminModel, to override the list view, when emulating a user.

0.6.1

	Added a panel plugin to support the Bootstrap Panel.

	Added experimental support for secondary menus.

	Renamed AccordionPlugin to BootstrapAccordionPlugin for consistency and to avoid future
naming conflicts.

0.6.0

	Fixed #79: The column width is not reduced in width, if a smaller column precedes a column for a
smaller displays.

	Fixed: Added extra space before left prefix in buttons.

	Enhanced: Access the link content through the glossary’s link_content.

	New: Plugins now can be rendered using an alternative template, choosable through the plugin
editor.

	Fixed in SegmentationPlugin: When overriding the context, this updated context was only used for
the immediate child of segment. Now the overridden context is applied to all children and
grandchildren.

	Changed in SegmentationPlugin: When searching for siblings, use a list index instead of
get_children().get(position=...).

	Added unit tests for SegmentationPlugin.

	Added support for django-reversion.

	By using the setting CMSPLUGIN_CASCADE_LINKPLUGIN_CLASSES, one can replace the class
LinkPluginBase by an alternative implementation.

	When using Extra Styles distances now can have negative values.

	In caption field of CarouselSlidePlugin it now is possible to set links onto arbitrary pages.

Possible backwards incompatibility:

	For consistency with naming conventions on other plugins, renamed cascade/plugins/link.html
-> cascade/link/link-base.html. Check your templates!

	The setting CMSPLUGIN_CASCADE_SEGMENTATION_MIXINS now is a list of two-tuples, where the first
declares the plugin’s model mixin, while the second declares the model admin mixin.

	Removed from setting: CMSPLUGIN_CASCADE_BOOTSTRAP3_TEMPLATE_DIR. The rendering template now
can be specified during runtime.

	Refactored and moved SimpleWrapperPlugin and HorizontalRulePlugin from
cmsplugin_cascade/bootstrap3/ into cmsplugin_cascade/generic/. The glossary field
element_tag has been renamed to tag_type.

	Refactored LinkPluginBase so that external implementations can create their own version,
which then is used as base for TextLinkPlugin, ImagePlugin and PicturePlugin.

	Renamed: PanelGroupPlugin -> Accordion, PanelPlugin -> AccordionPanelPlugin,
because the Bootstrap project renamed them back to their well known names.

0.5.0

	Added SegmentationPlugin. This allows to conditionally render parts of the DOM, depending on
the status of various request object members, such as user.

	Setting CASCADE_LEAF_PLUGINS has been replaced by CMSPLUGIN_CASCADE_ALIEN_PLUGINS. This simplifies
the programming of third party plugins, since the author of a plugin now only must set the member
alien_child_classes = True.

0.4.5

	Fixed: If no breakpoints are set, don’t delete widths and offsets from the glossary, as otherwise
this information is lost.

	Fixed broken import for PageSelectFormField when not using django_select2.

	Admin form for PluginExtraFields now is created on the fly. This fixes a rare circular
dependency issue, when accessing plugin_pool.get_all_plugins().

0.4.4

	Removed hard coded input fields for styling margins from BootstrapButtonPlugin, since
it is possible to add them through the Extra Fields dialog box.

	[Column ordering](http://getbootstrap.com/css/#grid-column-ordering) using col-xx-push-n
and col-xx-pull-n has been added.

	Fixed: Media file linkplugin.js was missing for BootstrapButtonPlugin.

	Hard coded configuration option EXTRA_INLINE_STYLES can now be overridden by the projects
settings

0.4.3

	The templatetag bootstrap3_tags and the templates to build Boostrap3 styled menus,
breadcrumbs and paginator, have been moved into their own repository
at https://github.com/jrief/djangocms-bootstrap3.

	Column ordering [http://getbootstrap.com/css/#grid-column-ordering] using col-xx-push-n and col-xx-pull-n has been added.

0.4.2

	Fixed: Allow empty setting for CMSPLUGIN_CASCADE_PLUGINS

	Fixed: Use str(..) instead of b’’ in combination with from __future__ import unicode_literals

0.4.1

	Fixed: Exception when saving a ContainerPlugin with only one breakpoint.

	The required flag on a field for an inherited LinkPlugin is set to False for shared settings.

	Fixed: Client side code for disabling shared settings did not work.

0.4.0

	Renamed context from model CascadeElement to glossary`. The identifier ``context lead
to too much confusion, since it is used all way long in other CMS plugins, where it has a
complete different meaning.

	Renamed partial_fields in all plugins to glossary_fields, since that’s the model field
where they keep their information.

	Huge refactoring of the code base, allowing a lot of more features.

0.3.2

	Fixed: Missing unicode conversion for method get_identifier()

	Fixed: Exception handler for form validation used getattr incorrectly.

0.3.1

	Added compatibility layer for Python-3.3.

0.3.0

	Complete rewrite. Now offers elements for Bootstrap 3 and other CSS frameworks.

0.2.0

	Added carousel.

0.1.2

	Fixed: Added missign migration.

0.1.1

	Added unit tests.

0.1.0

	First published revision.

Thanks

This DjangoCMS plugin originally was derived from https://github.com/divio/djangocms-style, so the
honor for the idea of this software goes to Divio and specially to Patrick Lauber, aka digi604.

However, since my use case is different, I removed all the existing code and replaced it against
something more generic suitable to add a collection of highly configurable plugins.

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	djangocms-cascade 0.10.1 documentation

Index

 P

P

 	

 	PluginExtraFieldsConfig (class in cmsplugin_cascade.extra_fields.config)

 Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

 _static/navbar.png
Project name HOME About Contact ~ Dropdown~
Dropdown

Action

Something

_static/customize-styles.png
Django administration ‘Welcome, admin. Change password / Log out

Home Csplugin_cas E < PluginExtraFilds objoct
Change Custom CSS classes and styles History
PluginName: | Bootstrap Simple Wrapper 3
site: example.com 3| 4
@ Alowidtag
CSS class names Allow multiple

thumbnei, jumbotron o

Froaly slectable CSS classnamesforthis Plugin, separated by commas.

Customized Margins Fields: Units for Margins Fields:
O magntop () magnright () margin-botom () margineft [pxemand% 3
Customized Paddings Fields: Units for Paddings Fields:
O paddngtop () paddngright () paddingbotom (] paddngeft [px,emand% &
Customized Widths Fields: Units for Widths Fields:
O mnwidh O wdh (O macwidth [pxemand% %
Customized Heights Fields: Uniits for Heights Fields:
@ minheight () heignt () macheight | pxandem
Customized Colors Fields:
O coor @ background-color
Customized Overflow Fields:
O oveflow (O overowx (J overfiow-y

[oo | [SR———— .. |

_static/minus.png

search.html

 Navigation

 		
 index

 		djangocms-cascade 0.10.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

_static/pull-down.png

_static/edit-grid.png
Grid

Column Grid

4units 4
Grid in column units,

Prefix
unused

Suffix
unused

Options
O Leftaligned () Rightaligned () Clearfix

Inline Styles

min-height margin-top margin-botton|
Minimum height for this column.

Container 12 Grid

cune

_static/sharable-link-element.png
|pwowsewon 0 x|

Add sharable link element

Link Content: Click here

Content of Link

Shared Settings: | Use individual settings &

Use settings shared with other plugins of this type

Link type: CMSPage & .

‘An internallink onto CMS pages of tis ste

| Title

)

Links Tt

Link Target

@© sameWindow O NewWindow (O Parent Window O Topmost Frame
Open Link in other target.

_static/nested-rows.png
Level 1: .col-md-3

Level 1: col-md-9

Level 2: .col-md-6

icon-fonts.html

 Navigation

 		
 index

 		djangocms-cascade 0.10.1 documentation »

Using Icon Fonts

Introduction

Sometime we want to enrich our web pages with vectorized symbols. A lot of them can be found in
various font libraries, such as Font Awesome [http://fontawesome.io/], Material Icons [https://design.google.com/icons/] and many more. A typical approach
would be to upload the chosen SVG symbol, and use it as image. This process however is time
consuming and error-prone to organize. Therefore, djangocms-cascade offers an utility in order
to work with icon fonts directly.

In order to setup a font, we currently must use Fontello [http://fontello.com/], an external service for icon font
generation. In the future, this service might be integrated into djangocms-cascade itself.
In order to start, chose one or more icon fonts inside from the Fontello website and download the
generated webfont file to a local folder.

Uploading the Font

In the Django backend, change into Start › django CMS Cascade › Uploaded Icon Fonts and add an
Icon Font object. Chose an appropriate name and upload the just downloaded webfont file, without
unzipping it. After the upload completed, all the imported icons appear grouped by their font
family. They now are ready for being used.

Using a Font Icon

A font symbol can be used everywhere plain text can be added. Inside a djangoCMS placeholder
field add a plugin of type Font Icon. Select from one of the uploaded fonts. Now a list of
possible font icons appears. Select the desired icon, its size and its relative position in respect
of its wrapping element. After saving the form, that element should appear inside the chosen
container.

 © Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

_images/edit-row.png
®

Columns:

Container

[3columns 4

Number of columns to be created with this row.

Row

_static/down-pressed.png

_static/ajax-loader.gif

_images/customize-styles.png
Django administration ‘Welcome, admin. Change password / Log out

Home Csplugin_cas E < PluginExtraFilds objoct
Change Custom CSS classes and styles History
PluginName: | Bootstrap Simple Wrapper 3
site: example.com 3| 4
@ Alowidtag
CSS class names Allow multiple

thumbnei, jumbotron o

Froaly slectable CSS classnamesforthis Plugin, separated by commas.

Customized Margins Fields: Units for Margins Fields:
O magntop () magnright () margin-botom () margineft [pxemand% 3
Customized Paddings Fields: Units for Paddings Fields:
O paddngtop () paddngright () paddingbotom (] paddngeft [px,emand% &
Customized Widths Fields: Units for Widths Fields:
O mnwidh O wdh (O macwidth [pxemand% %
Customized Heights Fields: Uniits for Heights Fields:
@ minheight () heignt () macheight | pxandem
Customized Colors Fields:
O coor @ background-color
Customized Overflow Fields:
O oveflow (O overowx (J overfiow-y

[oo | [SR———— .. |

_images/navbar.png
Project name HOME About Contact ~ Dropdown~
Dropdown

Action

Something

_static/segment-plugin.png
Condition tag
[ED

Django’s conditon tag

Condition evaluation

| user.is_anonymous|

Evaluatin as used in Diango's tampate tags fo concitons.

Row Column Segment

_images/sharable-link-element.png
|pwowsewon 0 x|

Add sharable link element

Link Content: Click here

Content of Link

Shared Settings: | Use individual settings &

Use settings shared with other plugins of this type

Link type: CMSPage & .

‘An internallink onto CMS pages of tis ste

| Title

)

Links Tt

Link Target

@© sameWindow O NewWindow (O Parent Window O Topmost Frame
Open Link in other target.

_static/rule-editor.png
Horizontal Rule

There are no further settings for this plugin

Please hit OK to save.

Container Horizontal Rule

_static/art_direction.jpg

_static/edit-image.png
Image

image:
ArtemisiaGenipiipg Q X

Image Title
Genepl

‘Gapion textacded tothe il atirbute ofthe element.

Alternative Description

Textualdoscripton of th image added to the'alt g of the sament.

Link type: | External URL % hitps:/t.wikipedia.orghwiki/Genep%Ca%

Link onto external page

Link Target
@ SameWindow () NewWndow () ParentWindow () TopmostFrame
Open Linkin othe target.

Image Shapes
@ FResponsve () Rounded () Cide @ Thumbnal

Responsive Image Width
100%

‘ot the image width in porcent rolatve to contaling elemert

Adapt Image Height

‘Seta fixed hight n pixas, or parcent relative o he image width.

Resize Options
O Upscaleimage @ Cropimage @ Withsubjectiocation @ Optimized for Retina
Optons o use when resizing th mage

Container Row Coumn Image Gancel

_images/art_direction.jpg

_static/comment-bright.png

_images/edit-image.png
Image

image:
ArtemisiaGenipiipg Q X

Image Title
Genepl

‘Gapion textacded tothe il atirbute ofthe element.

Alternative Description

Textualdoscripton of th image added to the'alt g of the sament.

Link type: | External URL % hitps:/t.wikipedia.orghwiki/Genep%Ca%

Link onto external page

Link Target
@ SameWindow () NewWndow () ParentWindow () TopmostFrame
Open Linkin othe target.

Image Shapes
@ FResponsve () Rounded () Cide @ Thumbnal

Responsive Image Width
100%

‘ot the image width in porcent rolatve to contaling elemert

Adapt Image Height

‘Seta fixed hight n pixas, or parcent relative o he image width.

Resize Options
O Upscaleimage @ Cropimage @ Withsubjectiocation @ Optimized for Retina
Optons o use when resizing th mage

Container Row Coumn Image Gancel

_static/use-shared-settings.png
Stared Settings:

Use setings shared with other plugins of this type

_images/nested-rows.png
Level 1: .col-md-3

Level 1: col-md-9

Level 2: .col-md-6

_static/file.png

_images/section-bookmark.png
Element ID

titlel

‘A unique identifer for this element

_static/plus.png

_images/use-shared-settings.png
Stared Settings:

Use setings shared with other plugins of this type

_images/remember-settings.png
(O Remember these settings as:

_images/segment-plugin.png
Condition tag
[ED

Django’s conditon tag

Condition evaluation

| user.is_anonymous|

Evaluatin as used in Diango's tampate tags fo concitons.

Row Column Segment

_static/remember-settings.png
(O Remember these settings as:

_images/rule-editor.png
Horizontal Rule

There are no further settings for this plugin

Please hit OK to save.

Container Horizontal Rule

_images/structure-container.png
IAIN CONTENT G
v Container ranging from 720 through 1140 pixels
v Row with 3 columns
v Column default width: 4 units

Text Early and frequent

v Column default width: 4 units

Text This belief reinforced

v Column default width: 4 units.

Text The most important.

_static/section-bookmark.png
Element ID

titlel

‘A unique identifer for this element

_images/persist-clipboard.png
Change Persited Clipboard Content History

Identifier: Main Content
o - |
Glpboard:

Glpboard:

Data R &

Enter valid SON

sovm st soaor sovasnaconssann [0

_static/edit-shared-fields.png
Django administration

Home Cmsplugn,

ads » Shared betwoen Plugins » imgsave

Welcome, admin. Change password / Log out

Change BootstraplmagePlugin

Identifier: My Bhared Image Fields

Shared Fields

Image Shapes

@ Rosponsve () Rounded

@ Cirde

Responsive Image Width
0%

Sot the image width n percent relatve to containing element

Adapt Image Height
0%

St afxed helght I piels, o percent reatve to the mage wicth.

Resize Options

 Upscaleimage @ Grop image
Optons o use when resizing th mage

@ With subjct location

@ Thumbrai

@ Optimized for Retina

_images/edit-shared-fields.png
Django administration

Home Cmsplugn,

ads » Shared betwoen Plugins » imgsave

Welcome, admin. Change password / Log out

Change BootstraplmagePlugin

Identifier: My Bhared Image Fields

Shared Fields

Image Shapes

@ Rosponsve () Rounded

@ Cirde

Responsive Image Width
0%

Sot the image width n percent relatve to containing element

Adapt Image Height
0%

St afxed helght I piels, o percent reatve to the mage wicth.

Resize Options

 Upscaleimage @ Grop image
Optons o use when resizing th mage

@ With subjct location

@ Thumbrai

@ Optimized for Retina

_static/add-row.png
Container ranging from 720 through 1140 pixels

Settings
Copy

Cut

Edit

Detete

Create Alias
Bootstrap
Horizontal Rule

_static/persist-clipboard.png
Change Persited Clipboard Content History

Identifier: Main Content
o - |
Glpboard:

Glpboard:

Data R &

Enter valid SON

sovm st soaor sovasnaconssann [0

_images/navbar-mobile.png
Project name

HOME
About
Contact
Dropdown~
Dropdown

Action

Something

_static/edit-container.png
@ Toy(res @ Smal(a768pxand <992p0)

Supported csplay widhs or Bootstrap's rid system.
Fluid Container

‘Ghanging your outermost " containerto"container-fud

Container

Container

]

@ Medium (2092px and <1200p%)

@ Large (21200p9)

_images/simple-link-element.png
Add CMS Plugin

Add simple link element

Link Gontent: Link
Content of Link

Link type: CMS Page &

Title

Link's Tite

Link Target

@ SameWindow O New Window

‘Open Link nothar target.

© Parent Window

© Topmost Frame

= o P

_static/page-hierarchy.png
example.com Page History Language

Select page to change Add page
Fiter:off
Q
Search

ENUS Mew Actons o

Home o [} L]

About ® o (o] o
Contact ® o (] o
Dropdown ® o (] o
Action ® o (] o
Something ® o [m] []

_images/edit-container.png
@ Toy(res @ Smal(a768pxand <992p0)

Supported csplay widhs or Bootstrap's rid system.
Fluid Container

‘Ghanging your outermost " containerto"container-fud

Container

Container

]

@ Medium (2092px and <1200p%)

@ Large (21200p9)

_static/live-demo.png
Project name Home

Release Eary, Release often

Early and frequent releases are a
critical part of the Linux
development model. Most
developers (including me) used to
believe this was bad policy for
larger than trivial projects,
because early versions are almost
by definition buggy versions and
Yyou don't want to wear out the
patience of your users.

The most important of these, the
Ohio State Emacs Lisp archive,
anticipated the spirit and many of
the features of today's big Linux
archives. But few of us really
thought very hard about what we
were doing, or about what the
Very existence of that archive
suggested about problems in the
FSF's cathedral-building

Release early. Release often. And
listen to your customers.

Linus's innovation wasn't so much
in doing quick-turnaround
releases incorporating lots of user
feedback (something like this had
been Unix-world tradition for a
long time), but in scaling it up to a
level of intensity that matched the.
complexity of what he was

_images/page-hierarchy.png
example.com Page History Language

Select page to change Add page
Fiter:off
Q
Search

ENUS Mew Actons o

Home o [} L]

About ® o (o] o
Contact ® o (] o
Dropdown ® o (] o
Action ® o (] o
Something ® o [m] []

_static/comment.png

_images/link-bookmark.png
Link: CMSPage +

Type o link

Home () x v titled 4

‘An internal lnk onto CMS pages of thi

Page bookmark

_images/edit-picture.png
SR

Image Title
Bo White House:

‘Gapion textacded to the il atirbute ofthe element.

Alternative Description

Textualdoscripton of th image added to the 'alt ag of the elament.

Link type: | No Link k2
Adapt Picture Heights
s sm ma)
400% 100% 200% 100%

Hoights of cturs I percont or pixas for distinct Bootstrap's braakpoints.

Adapt Picture Zoom
s sm ma)
400% 200% 100% 0%

Magrifcaton of piture In parcent fo dstinct Bootstrap's breakpoints.

Resize Options
@ Upscaleimage @ Cropimage @ Wit subjectiocation () Optimized for Retina
Options to use when resizing the image.

Container Row Coumn Picture Cancel

_images/add-container.png
Main Content Container

Add plugin to placeholder "Main Content Cont

Bootstrap

Container

Generic
Link

Text

_images/edit-column.png
Column

Default column width
4units ¢

Number of column unitsfordevices narower than 768 pixels.

Responsive utilities for mobile phones
@ Defait (O Visble (O Hidden
Uiy lassesfo showing and hding cotant by devies naower than 768 iel.

Column width for tablets
Inhert from above 3

‘Override column unisfor deices naower than 952 pixis.

Offset for tablets.
Nooffset 4

Number of offset urts fo devices narrower than 992 pixels.

Responsive utilities for tablets
@ Defait (O Visble (O Hidden
Uity classes forshowing and hicing content by devices naower than 992 pixels.

Column width for laptops
Inherit from above §

‘Override column unitsfor devices naower than 1200 pixas.

Offset for laptops
No offset 4

Number of offset urts fo devices narrower than 1200 pixes.

Responsive utilities for laptops
@ Defait (O Visble (O Hidden
Uiy lasses fo showing and hcing content by devices narowe than 1200 pixel.

Column width for large desktops
Inherit from above §

‘Override coumn unitsfor devices wider than 1200 pixel.

Offset for large desktops
No offset 4

Number of ofse uns for deicss widerthan 1200 pixls.
Responsive utilities for large desktops

@ Defait (O Visble (O Hidden
Uity classes for showing and hiding content by devices wider than 1200 pels.

Container Row Column

_static/up-pressed.png

_static/structure-container.png
IAIN CONTENT G
v Container ranging from 720 through 1140 pixels
v Row with 3 columns
v Column default width: 4 units

Text Early and frequent

v Column default width: 4 units

Text This belief reinforced

v Column default width: 4 units.

Text The most important.

_static/link-bookmark.png
Link: CMSPage +

Type o link

Home () x v titled 4

‘An internal lnk onto CMS pages of thi

Page bookmark

_static/edit-picture.png
SR

Image Title
Bo White House:

‘Gapion textacded to the il atirbute ofthe element.

Alternative Description

Textualdoscripton of th image added to the 'alt ag of the elament.

Link type: | No Link k2
Adapt Picture Heights
s sm ma)
400% 100% 200% 100%

Hoights of cturs I percont or pixas for distinct Bootstrap's braakpoints.

Adapt Picture Zoom
s sm ma)
400% 200% 100% 0%

Magrifcaton of piture In parcent fo dstinct Bootstrap's breakpoints.

Resize Options
@ Upscaleimage @ Cropimage @ Wit subjectiocation () Optimized for Retina
Options to use when resizing the image.

Container Row Coumn Picture Cancel

_static/edit-column.png
Column

Default column width
4units ¢

Number of column unitsfordevices narower than 768 pixels.

Responsive utilities for mobile phones
@ Defait (O Visble (O Hidden
Uiy lassesfo showing and hding cotant by devies naower than 768 iel.

Column width for tablets
Inhert from above 3

‘Override column unisfor deices naower than 952 pixis.

Offset for tablets.
Nooffset 4

Number of offset urts fo devices narrower than 992 pixels.

Responsive utilities for tablets
@ Defait (O Visble (O Hidden
Uity classes forshowing and hicing content by devices naower than 992 pixels.

Column width for laptops
Inherit from above §

‘Override column unitsfor devices naower than 1200 pixas.

Offset for laptops
No offset 4

Number of offset urts fo devices narrower than 1200 pixes.

Responsive utilities for laptops
@ Defait (O Visble (O Hidden
Uiy lasses fo showing and hcing content by devices narowe than 1200 pixel.

Column width for large desktops
Inherit from above §

‘Override coumn unitsfor devices wider than 1200 pixel.

Offset for large desktops
No offset 4

Number of ofse uns for deicss widerthan 1200 pixls.
Responsive utilities for large desktops

@ Defait (O Visble (O Hidden
Uity classes for showing and hiding content by devices wider than 1200 pels.

Container Row Column

_static/down.png

_static/edit-row.png
®

Columns:

Container

[3columns 4

Number of columns to be created with this row.

Row

bootstrap3/gallery.html

 Navigation

 		
 index

 		djangocms-cascade 0.10.1 documentation »

Gallery

A gallery is a collection of images displayed as a group. Since it normally consists of many similar
images, djangocms-cascade does not require to use child plugins for each image. Instead they
can be added directly to this gallery plugin. This simplifies the management of images.

Currently the GalleryPlugin is implemented without any decent template. If anybody knows a
good HTML snippet to represent a gallery/lightbox, please let me know. Otherwise I will
try with http://ashleydw.github.io/lightbox/

 © Copyright Copyright 2016, Jacob Rief.
 Created using Sphinx 1.3.5.

_static/up.png

_static/empty-container.png
Project name Home

Add Bootstrap container here

Use this placeholder as a quick way to start editing a new CMS page.
All you have to do is to append ?edit to the URL and switch to “Structure” mode.

Place sticky footer content here.

_static/comment-close.png

_static/simple-link-element.png
Add CMS Plugin

Add simple link element

Link Gontent: Link
Content of Link

Link type: CMS Page &

Title

Link's Tite

Link Target

@ SameWindow O New Window

‘Open Link nothar target.

© Parent Window

© Topmost Frame

= o P

_static/add-container.png
Main Content Container

Add plugin to placeholder "Main Content Cont

Bootstrap

Container

Generic
Link

Text

_static/navbar-mobile.png
Project name

HOME
About
Contact
Dropdown~
Dropdown

Action

Something

