
djangocms-cascade Documentation
Release 0.8.5

Jacob Rief

June 06, 2016

Contents

1 Project’s home 1

2 Project’s goals 3

3 Contents: 5
3.1 For the Impatient . 5
3.2 Introduction . 7
3.3 Installation . 7
3.4 Link Plugin . 10
3.5 Bootstrap 3 Grid system . 14
3.6 Segmentation of the DOM . 29
3.7 Working with sharable fields . 30
3.8 Customize CSS classes and inline styles . 32
3.9 Chose an alternative rendering template . 35
3.10 The CMS Clipboard . 36
3.11 Extending Cascade . 38
3.12 Generic Plugins . 41
3.13 Release History . 43

4 Indices and tables 49

i

ii

CHAPTER 1

Project’s home

Check for the latest release of this project on Github.

Please report bugs or ask questions using the Issue Tracker.

In djangoCMS-Cascade version 0.7.0, the configuration settings have been hugely refactored. If you were using
version 0.6.2 or lower, check your settings.py for deprecated configuration directives.

1

https://github.com/jrief/djangocms-cascade
https://github.com/jrief/djangocms-cascade/issues

djangocms-cascade Documentation, Release 0.8.5

2 Chapter 1. Project’s home

CHAPTER 2

Project’s goals

1. Create a modular system, which allows programmers to add simple widget code, without having to implement
an extra djangoCMS plugins for each of them.

2. Make available a meaningful subset of widgets as available for the most common CSS frameworks, such as
Twitter Bootstrap. With these special plugins, in many configurations, djangoCMS can be operated using one
single template, containing one generic placeholder.

3. Extend this djangoCMS plugin, to be used with other CSS frameworks such as Foundation 5, Unsemantic and
others.

4. Use the base functionality of djangoCMS-Cascade to easily add special plugins. For instance, djangoSHOP
implements all its cart and checkout specific forms this way.

3

https://www.django-cms.org/
http://getbootstrap.com/
http://foundation.zurb.com/
http://unsemantic.com/
https://www.django-shop.org/

djangocms-cascade Documentation, Release 0.8.5

4 Chapter 2. Project’s goals

CHAPTER 3

Contents:

3.1 For the Impatient

This HowTo gives you a quick instruction on how to get a demo of djangocms-cascade up and running. It also
is a good starting point to ask questions or report bugs, since its backend is used as a fully functional reference
implementation, used by the unit tests of project.

3.1.1 Create a Python Virtual Environment

To keep environments separate, first create a virtualenv.

#!/bin/sh
sudo pip install --upgrade virtualenv
virtualenv --distribute --no-site-packages myvirtualenv
source myvirtualenv/bin/activate
(myvirtualenv)$

3.1.2 Clone the latest stable releases

Create a temporary file, for instance named requirements.txt, containing these entries:

Django==1.9.6
Django-Select2==5.8.4
Pillow==3.2.0
Unidecode==0.4.18
django-classy-tags==0.7.2
django-cms==3.2.3
django-filer==1.2.0
django-treebeard==4.0
django-polymorphic==0.9.2
django-reversion==1.10.1
django-sass-processor==0.3.4
django-sekizai==0.9.0
djangocms-bootstrap3==0.1.1
-e git+https://github.com/jrief/djangocms-cascade.git#egg=djangocms-cascade
djangocms-text-ckeditor==2.8.1
easy-thumbnails==2.3
html5lib==0.9999999
jsonfield==1.0.3
six==1.9.0

5

djangocms-cascade Documentation, Release 0.8.5

and install them into your environment:

pip install -r requirements.txt

this will take a few minutes. After the installation finished, change into the folder containing the demo application,
install missing CSS and JavaScript files, initialize the database and create a superuser:

cd $VIRTUAL_ENV/src/djangocms-cascade
bower install --require
cd examples
./manage.py migrate --settings=bs3demo.settings
./manage.py createsuperuser --settings=bs3demo.settings
./manage.py runserver --settings=bs3demo.settings

Point a browser onto http://localhost:8000/ and log in as the super user. Here you should be able to add your first
page. Do this by changing into into Structure mode on the top of the page. Now a heading named MAIN CONTENT
appears. This heading symbolizes a djangoCMS Placeholder.

Locate the plus sign right to the heading and click on it. From its context menu select Container located in the section
Bootstrap:

This brings you into the editor mode for a Bootstrap container. To this container you may add one or more Bootstrap
Rows. Inside these rows you may organize the layout using some Bootstrap Columns.

Please proceed with the detailled explanation on how to use the Bootstrap’s grid system within djangocms-cascade.

6 Chapter 3. Contents:

http://localhost:8000/

djangocms-cascade Documentation, Release 0.8.5

3.2 Introduction

DjangoCMS-Cascade is a collection of plugins for Django-CMS >=3.2 to add various HTML elements from CSS
frameworks, such as Twitter Bootstrap to the Django templatetag placeholder. This Django App makes it very easy to
add other CSS frameworks, or to extend an existing collection with additional elements.

DjangoCMS-Cascade allows web editors to layout their pages, without having to create different Django templates
for each layout modification. In most cases, one template with one single placeholder is enough. The editor then can
subdivide that placeholder into rows and columns, and add additional DOM elements such as buttons, rulers, or even
the Bootstrap Carousel. Some basic understanding on how the DOM works is required though.

Twitter Bootstrap is a well documented CSS framework which gives web designers lots of possibilities to add a
consistent structure to their pages. This collection of Django-CMS plugins offers a subset of these predefined elements
to web designers.

3.2.1 Extensibility

This module requires one database table with one column to store all data in a JSON object. All DjangoCMS-Cascade
plugins share this same model, therefore they can be easily extended, because new data structures are added to that
JSON object without requiring a database migration.

Another three database tables are required for additional optional features.

Naming Conflicts

Some djangoCMS plugins may use the same name as plugins from djangocms-cascade. To prevent confusion, since
version 0.7.2, all Cascade plugins as prefixed with a (koppa) symbol. This can be deactivated or changed by setting
CMSPLUGIN_CASCADE[’plugin_prefix’] to False or any other symbol.

3.3 Installation

Install the latest stable release

$ pip install djangocms-cascade

or the current development release from github

$ pip install -e git+https://github.com/jrief/djangocms-cascade.git#egg=djangocms-cascade

3.3.1 Dependencies

• Django >=1.8

• DjangoCMS >=3.2

3.3.2 Create a database schema

./manage.py migrate cmsplugin_cascade

3.2. Introduction 7

https://github.com/divio/django-cms/
http://getbootstrap.com/
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/
https://django-cms.readthedocs.org/en/latest/advanced/templatetags.html#placeholder
https://docs.djangoproject.com/en/dev/topics/templates/
http://www.w3.org/DOM/
https://django-cms.readthedocs.org/en/latest/getting_started/plugin_reference.html
http://djangoproject.com/
https://www.django-cms.org/

djangocms-cascade Documentation, Release 0.8.5

3.3.3 Install Bootstrap

Since the Bootstrap CSS and JavaScript files are part of their own repository, they are not shipped within this package.
Furthermore, as they are not part of the PyPI network, they have to be installed through another package manager,
namely bower.

cd djangocms-cascade
bower install --require

Alternatively copy the installed bower_components into a directory of your project or to any other meaningful
location, but ensure that the directory bower_components can be found by your StaticFileFinder. In doubt, add
that directory to your STATICFILES_DIRS:

STATICFILES_DIRS = (
os.path.abspath(os.path.join(MY_PROJECT_DIR, 'bower_components')),

)

3.3.4 Configuration

Add ’cmsplugin_cascade’ to the list of INSTALLED_APPS in the project’s settings.py file. Optionally
add ‘cmsplugin_cascade.extra_fields’ and/or ‘cmsplugin_cascade.sharable’ to the list of INSTALLED_APPS. Make
sure that these entries are located before the entry cms.

Configure the CMS plugin

INSTALLED_APPS = (
...
'cmsplugin_cascade',
'cmsplugin_cascade.clipboard', # optional
'cmsplugin_cascade.extra_fields', # optional
'cmsplugin_cascade.sharable', # optional
'cmsplugin_cascade.segmentation', # optional
'cms',
...

)

Activate the plugins

By default, no djangocms-cascade plugins is activated. Activate them in the project’s settings.py with the
directive CMSPLUGIN_CASCADE_PLUGINS.

To activate all available Bootstrap plugins, use:

CMSPLUGIN_CASCADE_PLUGINS = ('cmsplugin_cascade.bootstrap3',)

If for some reason, only a subset of the available Bootstrap plugins shall be activated, name each of them. If for
example only the grid system shall be used, but no other Bootstrap plugins, then configure:

CMSPLUGIN_CASCADE_PLUGINS = ('cmsplugin_cascade.bootstrap3.container',)

A very useful plugin is the LinkPlugin. It superseds the djangocms-link-plugin, normally used together with the
CMS.

CMSPLUGIN_CASCADE_PLUGINS += ('cmsplugin_cascade.link',)

8 Chapter 3. Contents:

http://bower.io/
https://github.com/divio/djangocms-link

djangocms-cascade Documentation, Release 0.8.5

Generic Plugins which are not opinionated towards a specific CSS framework, are kept in a separate folder. It is
strongly suggested to always activate them:

CMSPLUGIN_CASCADE_PLUGINS = ('cmsplugin_cascade.generic',)

Sometimes it is useful to do a segmentation. Activate this by adding its plugin:

CMSPLUGIN_CASCADE_PLUGINS = ('cmsplugin_cascade.segmentation',)

Restrict plugins to a particular placeholder

Unfortunately djangoCMS does not allow to declare dynamically which plugins are eligible to be added as children
of other plugins. This is determined while bootstrapping the Django project and thus remain static. We therefore must
somehow trick the CMS to behave as we want.

Say, our Placeholder named “Main Content” shall accept the BootstrapContainerPlugin as its only child, we then
must use this CMS settings directive:

CMS_PLACEHOLDER_CONF = {
'Main Content Placeholder': {

'plugins': ['BootstrapContainerPlugin'],
'text_only_plugins': ['TextLinkPlugin'],
'parent_classes': {'BootstrapContainerPlugin': None},
'glossary': {

'breakpoints': ['xs', 'sm', 'md', 'lg'],
'container_max_widths': {'xs': 750, 'sm': 750, 'md': 970, 'lg': 1170},
'fluid': False,
'media_queries': {

'xs': ['(max-width: 768px)'],
'sm': ['(min-width: 768px)', '(max-width: 992px)'],
'md': ['(min-width: 992px)', '(max-width: 1200px)'],
'lg': ['(min-width: 1200px)'],

},
},

},
}

Here we add the BootstrapContainerPlugin to plugins and parent_classes. This is because the Container
plugin normally is the root plugin in a placeholder. If this plugin would not restrict its parent plugin classes, we would
be allowed to use it as a child of any plugin. This could destroy the page’s grid.

Note: Until version 0.7.1 the Container plugin did not restrict it’s parent_classes and therefore we did not have
to add it to the CMS_PLACEHOLDER_CONF settings.

Furthermore, in the above example we must add the TextLinkPlugin to text_only_plugins. This is because the
TextPlugin is not part of the Cascade ecosystem and hence does not know which plugins are allowed as its children.

The dictionary named glossary sets the initial parameters of the Bootstrap 3 Grid system.

Define the leaf plugins

Leaf plugins are those, which contain real data, say text or images. Hence the default setting is to allow the TextPlugin
and the FilerImagePlugin as leafs. This can be overridden using the configuration directive

3.3. Installation 9

djangocms-cascade Documentation, Release 0.8.5

CMSPLUGIN_CASCADE = {
...
'alien_plugins': ('TextPlugin', 'FilerImagePlugin', 'OtherLeafPlugin',),
...

}

Bootstrap 3 with AngularJS

Some Bootstrap3 plugins can be rendered using templates which are suitable for the very popular Angular UI Bootstrap
framework. This can be done during runtime; when editing the plugin a select box appears which allows to chose an
alternative template for rendering.

3.3.5 Template Customization

Make sure that the style sheets are referenced correctly by the used templates. DjangoCMS requires Django-Sekizai
to organize these includes, so a strong recommendation is to use that Django app.

The templates used for a DjangoCMS project shall include a header, footer, the menu bar and optionally a breadcrumb,
but should leave out an empty working area. When using HTML5, wrap this area into an <article> or <section>
element or just use it unwrapped (suggested). This placeholder shall be named using a generic identifier, for instance
“Main Content” or similar:

{% load cms_tags %}

<!-- wrapping element (optional) -->
{% placeholder "Main Content" %}

<!-- /wrapping element -->

From now on, the page layout can be adopted inside this placeholder, without having to fiddle with template coding
anymore.

3.4 Link Plugin

djangocms-cascade ships with its own Link plugin. This is because other plugins from djangocms-cascade, such
as ButtonPlugin, ImagePlugin or PicturePlugin require the functionality to set links to internal- and external URLs.
The de-facto plugin for links, djangocms-link can’t be used as a base class for these plugins, therefore an alternative
implementation has been created. And as all other Cascade plugins, the LinkPlugin also keeps its data in a JSON field.

Before using this plugin, assure that ’cmsplugin_cascade.link’ is member of the list or tuple
CMSPLUGIN_CASCADE_PLUGINS in the project’s settings.py.

10 Chapter 3. Contents:

http://angular-ui.github.io/bootstrap/
http://django-sekizai.readthedocs.org/en/latest/
https://github.com/divio/djangocms-link

djangocms-cascade Documentation, Release 0.8.5

The behavior of this Plugin is what you expect from a Link editor. The field Link Content is the text displayed between
the opening and closing <a> tag. If used in combination with djangocms-text-ckeditor the field automatically is filled
out.

By changing the Link type, the user can choose between three types of Links:

• Internal Links pointing to another page inside the CMS.

• External Links pointing to a valid Internet URL.

• Links pointing to a valid e-mail address.

The optional field Title can be used to add a title="some value" attribute to the <a href ...> element.

With Link Target, the user can specify, whether the linked content shall open in the current window or if the browser
shall open a new window.

3.4.1 Link Plugin with sharable fields

If your web-site contains many links pointing onto external URLs, you might want to refer to them by a symbolic
name, rather than having to reenter the URL repeatedly. With djangocms-cascade this can be achieved easily by
declaring some of the plugin’s fields as “sharable”.

Assure that INSTALLED_APPS contain ’cmsplugin_cascade.sharable’, then redefine the TextLinkPlu-
gin to have sharable fields in settings.py:

CMSPLUGIN_CASCADE = {
...
'plugins_with_sharables':

...
'TextLinkPlugin': ('link',), # and optionally other fields
...

},
...

}

3.4. Link Plugin 11

https://github.com/divio/djangocms-text-ckeditor

djangocms-cascade Documentation, Release 0.8.5

This will change the Link Plugin’s editor slightly. Note the extra field added to the bottom of the form.

Now the URL for this ink entity is stored in a central entity. This feature is useful, if for instance the URL of an
external web page may change in the future. Then the administrator can change that link in the administration area
once, rather than having to go through all the pages and check if that link was used.

To retain the Link settings, click onto the checkbox Remember these settings as: ... and give it a name of your choice.
The next time your create a Shared Link element, you may select a previously named settings from the select field
Shared Settings. Since these settings can be shared among other plugins, these input fields are disabled and can’t be
changed anymore.

Changing shared settings

The settings of a shared plugin can be changed globally, for all plugins using them. To edit such a shared setting, in
the Django Admin, go into the list view for Home › Cmsplugin_cascade › Shared between Plugins and choose the
named shared settings.

Please note, that each plugin type can specify which fields shall be sharable between its plugins. In this example,
only the Link itself is shared, but one could configure djangocms-cascade to also share the title and/or the link’s
target tags.

Then only these fields are editable in the detail view Shared between Plugins. The interface for other shared plugin
may vary substantially, depending of their type definition.

12 Chapter 3. Contents:

djangocms-cascade Documentation, Release 0.8.5

3.4.2 Extending the Link Plugin

While programming third party modules for Django, one might have to access a model instance through a URL and
thus add the method get_absolute_url to that Django model. Since such a URL is neither a CMS page, nor a URL to
an external web page, it would be convenient to access that model using a special Link type.

For example, this special Link plugin is used by djangoSHOP to allow direct linking from a CMS page to a shop’s
product.

1 # -*- coding: utf-8 -*-
2 from django.utils.translation import ugettext_lazy as _
3 from django.apps import apps
4 from django.core.exceptions import ObjectDoesNotExist
5 from django_select2.fields import AutoModelSelect2Field
6 from cms.plugin_pool import plugin_pool
7 from cmsplugin_cascade.link.forms import TextLinkForm
8 from cmsplugin_cascade.link.models import SimpleLinkElement
9 from cmsplugin_cascade.link.plugin_base import TextLinkPluginBase

10 from cmsplugin_cascade.utils import resolve_dependencies
11 from shop.models.product import Product
12

13

14 class ProductSearchField(AutoModelSelect2Field):
15 empty_value = []
16 search_fields = ['product_code__startswith', 'translations__name__startswith']
17 queryset = Product.objects.all()
18

19 def security_check(self, request, *args, **kwargs):
20 user = request.user
21 if user and not user.is_anonymous() and user.is_staff:
22 return True
23 return False
24

25 def prepare_value(self, value):
26 if not value:
27 return None
28 return super(ProductSearchField, self).prepare_value(value)
29

30

31 class LinkForm(TextLinkForm):
32 LINK_TYPE_CHOICES = (('cmspage', _("CMS Page")), ('product', _("Product")), ('exturl', _("External URL")), ('email', _("Mail To")),)
33 product = ProductSearchField(required=False, label='',
34 help_text=_("An internal link onto a product from the shop"))
35

36 def clean_product(self):
37 if self.cleaned_data.get('link_type') == 'product':
38 self.cleaned_data['link_data'] = {
39 'type': 'product',
40 'model': 'shop.Product',
41 'pk': self.cleaned_data['product'] and self.cleaned_data['product'].pk or None,
42 }
43

44 def set_initial_product(self, initial):
45 try:
46 Model = apps.get_model(*initial['link']['model'].split('.'))
47 initial['product'] = Model.objects.get(pk=initial['link']['pk'])
48 except (KeyError, ObjectDoesNotExist):
49 pass
50

3.4. Link Plugin 13

https://docs.djangoproject.com/en/1.7/ref/models/instances/#get-absolute-url

djangocms-cascade Documentation, Release 0.8.5

51

52 class LinkPlugin(TextLinkPluginBase):
53 model = SimpleLinkElement
54 fields = ('link_content', ('link_type', 'cms_page', 'product', 'ext_url', 'mail_to'), 'glossary',)
55 form = LinkForm
56

57 class Media:
58 js = resolve_dependencies('shop/js/admin/linkplugin.js')
59

60 plugin_pool.register_plugin(LinkPlugin)

When using this implementation, remember to change CMSPLUGIN_CASCADE_PLUGINS in your project’s
settings.py to that alternative Link plugin.

Now the select box for Link type will offer one additional option: “Product”. When this is selected, the site adminis-
trator can choose between all of the shops products.

3.5 Bootstrap 3 Grid system

In order to take full advantage of djangocms-cascade, you should be familiar with the concepts of the Bootstrap Grid
System, since all other Bootstrap components depend upon.

3.5.1 Bootstrap Container

A Container is the outermost component the Bootstrap framework knows of. Here the designer can specify the
breakpoints of a web page. By default, Bootstrap offers 4 breakpoints: “large”, “medium”, “small” and “tiny”. These
determine for which kind of screen widths, the grid system may switch the layout.

The editor window for a Container element offers the possibility to deactivate certain breakpoints. While this might
make sense under certain conditions, it is safe to always keep all four breakpoints active, since this gives the designer
of the web page the maximum flexibility.

Small devices exclusively

If the web page shall be optimized just for small but not for large devices, then disable the breakpoints for Large
and/or Medium. In the project’s style-sheets, the maximum width of the container element then must be reduced to

14 Chapter 3. Contents:

http://getbootstrap.com/css/#grid
http://getbootstrap.com/css/#grid

djangocms-cascade Documentation, Release 0.8.5

that chosen breakpoint:

@media(min-width: 1200px) {
.container {
max-width: 970px;

}
}

or, if you prefers the SASS syntax:

@media(min-width: $screen-lg) {
.container {
max-width: $container-desktop;

}
}

Large devices exclusively

If the web page shall be optimized just for large but not for small devices, then disable the breakpoints for Tiny and/or
Small.

Changing the style-sheets then is not required for this configuration setting.

Fluid Container

A variant of the normal Bootstrap Container is the Fluid Container. It can be enabled by a checkbox in the editors
window. Fluid Containers have no hards breakpoints, they adopt their width to whatever the browser pretends and are
slightly larger than their non-fluid counterpart.

A fluid container makes it impossible to determine the maximum width of responsive images for the large me-
dia breakpoint, because it is applied whenever the browser width extends 1200 pixels, but there is no upper limit.
Since for responsive images we somehow must specify a maximum width, the default is set to 1980 pixels. This in
settings.py can be changed, to say 2500 pixels, using the following configuration:

CMSPLUGIN_CASCADE = {
...
'bootstrap3': {

'fluid-lg-width': 2500,
},

}

Note: Fluid container are specially useful for hero images and full-width carousels. When required, add a free
standing fluid container to the placeholder and as its only child, use the picture or carousel plugin. Its content then is
stretched to the brower’s full width.

3.5.2 Bootstrap Row

Each Bootstrap Container may contain one or more Bootstrap Rows. A row does not accept any configuration setting.
However, while editing, one can specify the number of columns. When adding or changing a row, then this number
of columns are added if its value exceeds the current number of columns. Reducing the number of columns does not
delete any of them; they must explicitly be chosen from the context menu in structure view.

3.5. Bootstrap 3 Grid system 15

djangocms-cascade Documentation, Release 0.8.5

3.5.3 Horizontal Rule

A horizontal rule is used to separate rows optically from each other.

3.5.4 Column

In the column editor, one can specify the width, the offset and the visibility of each column. These values can be set
for each of the four breakpoints (tiny, small, medium and large), as specified by the Container plugin.

At the beginning this may feel rather complicate, but consider that Bootstrap 3 is mobile first, therefore all column
settings, first are applied to the narrow breakpoints, which later can be overridden for larger breakpoints at a later
stage. This is the reason why this editor starts with the column widths and column offsets for tiny rather than for large
displays.

16 Chapter 3. Contents:

djangocms-cascade Documentation, Release 0.8.5

3.5. Bootstrap 3 Grid system 17

djangocms-cascade Documentation, Release 0.8.5

Note: If the current column is member of a container which disables some of its breakpoints (large, medium, small
or tiny), then that column editor shows up only with the input fields for the enabled breakpoints.

3.5.5 Complete DOM Structure

After having added a container with different rows and columns, you may add the leaf plugins. These hold the actual
content, such as text and images.

By pressing the button Publish changes, the single blocks are regrouped and displayed using the Bootstrap’s grid
system.

3.5.6 Adding Plugins into a hard coded grid

Sometimes the given Django template already defines a Bootstrap Container, or Row inside a Container element.
Example:

<div class="container">
{% placeholder "Row Content" %}

</div>

or

<div class="container">
<div class="row">

{% placeholder "Column Content" %}
</div>

</div>

Here the Django templatetag {% placeholder "Row Content" %} requires a Row- rather than a Container-
plugin; and the templatetag {% placeholder "Column Content" %} requires a Column-plugin. Hence we
must tell djangocms-cascade which breakpoints shall be allowed and what the containers extensions shall be. This
must be hard-coded inside your setting.py:

CMS_PLACEHOLDER_CONF = {
for a row-like placeholder configuration ...
'Row Content': {

18 Chapter 3. Contents:

djangocms-cascade Documentation, Release 0.8.5

'plugins': ['BootstrapRowPlugin'],
'parent_classes': {'BootstrapRowPlugin': []},
'require_parent': False,
'glossary': {

'breakpoints': ['xs', 'sm', 'md', 'lg'],
'container_max_widths': {'xs': 750, 'sm': 750, 'md': 970, 'lg': 1170},
'fluid': False,
'media_queries': {

'xs': ['(max-width: 768px)'],
'sm': ['(min-width: 768px)', '(max-width: 992px)'],
'md': ['(min-width: 992px)', '(max-width: 1200px)'],
'lg': ['(min-width: 1200px)'],

},
}

},
or, for a column-like placeholder configuration ...
'Colummn Content': {

'plugins': ['BootstrapColumnPlugin'],
'parent_classes': {'BootstrapColumnPlugin': []},
'require_parent': False,
'glossary': {

'breakpoints': ['xs', 'sm', 'md', 'lg'],
'container_max_widths': {'xs': 750, 'sm': 750, 'md': 970, 'lg': 1170},
'fluid': False,
'media_queries': {

'xs': ['(max-width: 768px)'],
'sm': ['(min-width: 768px)', '(max-width: 992px)'],
'md': ['(min-width: 992px)', '(max-width: 1200px)'],
'lg': ['(min-width: 1200px)'],

},
}

},
}

Please refer to the DjangoCMS documentation for details about these settings with the exception of the dictionary
glossary. This latter setting is special to djangocms-cascade: It gives the placeholder the ability to behave like
a plugin for the Cascade app. Remember, each djangocms-cascade plugin stores all of its settings inside a Python
dictionary which is serialized into a single database field. By having a placeholder behaving like a plugin, here this so
named glossary is emulated using an additional entry inside the setting CMS_PLACEHOLDER_CONF, and it should:

• include all the settings a child plugin would expect from a real container plugin

• reflect how hard coded container was defined (e.g. whether it is fluid or not)

3.5.7 Nested Columns and Rows

One of the great features of Bootstrap is the ability to nest Rows inside Columns. These nested Rows then can contain
Columns of 2nd level order. A quick example:

<div class="container">
<div class="row">
<div class="col-md-3">
Left column

</div>
<div class="col-md-9">
<div class="row">
<div class="col-md-6">

3.5. Bootstrap 3 Grid system 19

https://django-cms.readthedocs.org/en/latest/basic_reference/configuration.html#std:setting-CMS_PLACEHOLDER_CONF

djangocms-cascade Documentation, Release 0.8.5

Left nested column
</div>
<div class="col-md-6">
Right nested column

</div>
</div>

</div>
</div>

</div>

rendered, it would look like:

If a responsive image shall be placed inside a column, we must estimate the width of this image, so that when rendered,
it fits exactly into that column. We want easy-thumbnails to resize our images to the columns width and not having
the browser to up- or down-scale them.

Therefore djangocms-cascade keeps track of all the breakpoints and the chosen column widths. For simplicity, this
example only uses the breakpoint “medium”. The default Boostrap settings for this width is 992 pixels. Doing simple
math, the outer left column widths gives 3 / 12 * 992 = 248 pixels. Hence, adding a responsive image to that column
means, that easy-thumnails automatically resizes it to a width of 248 pixels.

To calculate the width of the nested columns, first evaluate the width of the outer right column, which is 9 / 12 * 992
= 744 pixels. Then this width is subdivided again, using the the width of the nested columns, which is 6 / 12 * 744 =
372 pixels.

These calculations are always performed recursively for all nested column and for all available breakpoints.

Warning: As the name implies, a container marked as fluid, does not specify a fixed width. Hence instead of the
inner width, the container’s outer width is used as its maximum. For the large media query (with a browser width
of 1200 pixels or more), the maximum width is limited to 1980 pixels.

3.5.8 Other Bootstrap3 specific Plugins

HTML5 <picture> and the new elements

Bootstrap’s responsive grid system, helps developers to adapt their site layout to a wide range of devices, from smart-
phones to large displays. This works fine as long as the content can adopt to the different widths. Adding the CSS
class img-responsive to an tag, resizes that image to fit into the surrounding column. However,
since images are delivered by the server in one specific size, they either are too small and must be upscaled, resulting
in an grainy image, or are too big, resulting in a waste of bandwidth and slowing down the user experience, when
surfing over slow networks.

Adaptive resizing the images

An obvious idea would be to let the server decide, which image resolution fits best to the browsing device. This
however is bad practice. Images typically are served upon a GET-request pointing onto a specific URL. GET-requests

20 Chapter 3. Contents:

https://github.com/SmileyChris/easy-thumbnails

djangocms-cascade Documentation, Release 0.8.5

shall be idempotent and thus are predestined to be cached by proxies on the way to the client. Therefore it is a very
bad idea to let the client transmit its screen width via a cookie, and deliver different images depending on this value.

Since the sever side approach doesn’t work, it is the browsers responsibility to select the appropriate image size. An
ideal adaptive image strategy should do the following:

• Images should fit the screen, regardless of their size. An adaptive strategy needs to resize the image, so that it
can resize into the current column width.

• Downloading images shall minimize the required bandwidth. Large images are enjoying greater popularity with
the advent of Retina displays, but those devices normally are connected to the Internet using DSL rather than
mobiles, which run on 3G.

• Not all images look good when squeezed onto a small display, particularly images with a lot of detail. When
displaying an image on a mobile device, you might want to crop only the interesting part of it.

As these criteria can’t be fulfilled using the well known element, djangocms-cascade offers
two responsive variants recently added to the HTML5 standard:

One is the tag, but with the additional attributes sizes and srcset. This element can be used as a direct
replacement for .

The other is a new element named <picture>. Use this element, if the image’s shape or details shall adopt their
shape and/or details to the displaying media device. The correct terminology for this kind of behavior is art direction.

But in the majority of use cases, the Bootstrap Image Plugin will work for you. Use the Bootstrap Picture Plugin
only in those few cases, where in addition to the image width, you also want to change the aspect ratio and/or zoom
factor, depending on the display’s sizes.

Using these new elements, the browser always fetches the image which best fits the current layout. Additionally, if
the browser runs on a high resolution (Retina) display, an image with double resolution is downloaded. This results in
much sharper images.

Browser support Since Chrome 38, the element fully supports srcset and sizes. It also supports
the <picture> element right out of the box. Here is a list of native browser support for the picture and the image

3.5. Bootstrap 3 Grid system 21

http://usecases.responsiveimages.org/#art-direction
http://ericportis.com/posts/2014/srcset-sizes/
http://caniuse.com/#feat=picture

djangocms-cascade Documentation, Release 0.8.5

element with attribute srcset.

For legacy browsers, there is a JavaScript library named picturefill.js, which emulates the built in behavior of these
new features. But even without that library, djangocms-cascade renders these HTML elements in a way to fall back
on a sensible default image.

Image Plugin Reference

In edit mode, double clicking on an image, opens the Image Plugin editor. This editor offers the following fields in
order to adapt an image to the current layout.

22 Chapter 3. Contents:

http://caniuse.com/#feat=srcset
http://scottjehl.github.io/picturefill/

djangocms-cascade Documentation, Release 0.8.5

Image Clicking on the magnifying glass opens a pop-up window from django-filer where you can choose the appro-
priate image.

3.5. Bootstrap 3 Grid system 23

https://github.com/stefanfoulis/django-filer

djangocms-cascade Documentation, Release 0.8.5

Image Title This optional field shall be used to set the tag inside this
HTML element.

Alternative Description This field shall be used to set the alt tag inside the <picture> or element.
While the editor does require this field to be filled, it is strongly recommended to add some basic information about
that picture.

Link type Using this select box, one can choose to add an internal, or external link to the image. Please check the
appropriate section for details.

Image Shapes These checkboxes control the four CSS classes from the Bootstrap3 framework:
img-responsive, img-rounded, img-circle and img-thumbnail. While rendering HTML, they
will be added to the element.

Here the option Responsive has a special meaning. The problem with responsive images is, that their size depends
on the media width of the device displaying the image. Therefore we can not use the well known
element with a fixed width=".." and height="..". Instead, when rendering responsive images, the additional
attributes srcset and sizes are added to the element. The attribute srcset contains the URLs, of up to four
differently scaled images. The width of these images is determined by the maximum width of the wrapping container
<div>, normally a Bootstrap column.

Responsive Image Width This field is only available for responsive images. If set to 100% (the default), the image
will spawn the whole column width. By setting this to a smaller value, one may group more than one image side by
side into one column.

Fixed Image Width This field is only available for non-responsive images. Here an image size must be specified
in pixels. The image then will be rendered with a fixed width, independently of the current screen width. Images
rendered with a fixed width do not neither contain the attributes srcset nor sizes.

Adapt Image Height Leaving this empty (the default), keeps the natural aspect ratio of an image. By setting this
to a percentage value, the image’s height is resized to its current used width, hence setting this to 100% reshapes the
image into a square. Note that this normally requires to crop the image, see Resize Options below. Setting this value
in pixels, set the image to a fixed height.

Resize Options

• Upscale image: If the original image is smaller than the desired drawing area, then the image is upscaled. This
in general leads to blurry images and should be avoided.

• Crop image: If the aspect ratio of the image and the desired drawing area do not correlate, than the image is
cropped to fit, rather than leaving white space arround it.

• With subject location: When cropping, use the red circle to locate the most important part of the image. This
is a feature of Django’s Filer.

• Optimized for Retina: Currently only available for images marked as responsive, this option adds an images
variant suitable for Retina displays.

24 Chapter 3. Contents:

djangocms-cascade Documentation, Release 0.8.5

Picture Plugin Reference

A picture is another wording for image. It offers some rarely required options when working with images using art
direction. By double-clicking onto a picture, its editor pops up.

The field Image, Image Title, Alternative Description, Link type and Resize Options behave exactly the same as
for the Image Plugin.

Beware that Pictures always are considered as responsive, and they always spawn to the whole width of the wrapping
element, using the CSS style width: 100%. They make the most sense for large images extending over a large
area. Therefore it is not possible to specify a width for a picture.

3.5. Bootstrap 3 Grid system 25

http://usecases.responsiveimages.org/#art-direction
http://usecases.responsiveimages.org/#art-direction

djangocms-cascade Documentation, Release 0.8.5

Adapt Picture Heights Depending on the current screen’s width, one may set different heights for an image. This
is useful in order to adopt the aspect ratio of an image, when switching from desktops to mobile devices. Normally,
one should use a fixed height in pixels here, but when specifying the heights in percent, these heights are considered
relative to the current image height.

Adapt Picture Zoom Depending on the current screen’s width, one may set different zoom levels for an image. This
is useful for keeping the level of detail constant, at the cost of cropping more of the image’s margins.

Template tag for the Bootstrap3 Navbar

Warning: This template tag is now deprecated. It’s functionality has been split off into a new project that can be
found here: Django CMS Bootstrap 3.

Although it’s not derived from the CascadeElement class, this Django app is shipped with a template tag to render
the main menu inside a Bootstrap Navbar. This tag is named main_menu and shall be used instead of show_menu,
as shipped with the DjangoCMS menu app.

Render a Navbar according to the Bootstrap3 guide:

{% load bootstrap3_tags %}
...
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-collapse">
Toggle navigation

</button>
Project name

</div>
<div class="collapse navbar-collapse">
<ul class="nav navbar-nav">{% main_menu %}

</div>
</div>

</div>

Assume, the page hierarchy in DjangoCMS is set up like this:

26 Chapter 3. Contents:

https://github.com/jrief/djangocms-bootstrap3
http://getbootstrap.com/components/#navbar

djangocms-cascade Documentation, Release 0.8.5

then in the front-end, the navigation bar will be rendered as

3.5. Bootstrap 3 Grid system 27

djangocms-cascade Documentation, Release 0.8.5

on computer displays, and as

on mobile devices.

Note: Bootstrap3 does not support “hover”, since this event can’t be handled by touch screens. Therefore the client
has to click on the menu item, rather than moving the mouse cursor over it. In order to make CMS pages with children
selectable, those menu items are duplicated. For instance, clicking on Dropdown in the Navbar, just opens the pull-
down menu. Here the menu item for the page named “Dropdown” is rendered again. Clicking on this item, finally
loads that page from the CMS.

Note: Bootstrap3 does not support nested menus, because they wouldn’t be usable on mobile devices. Therefore the
template tag main_menu renders only one level of children, no matter how deep the page hierarchy is in DjangoCMS.

Panel element

Bootstrap is shipped with CSS helpers to facilitate the creation of Panels. In djangocms-cascade these panels can be
added to any placholder. In the context menu of a placeholder, select Panel below the section Bootstrap and chose
the style. The panel heading and footer are optional. As body, the panel element accepts other plugins, normally this
is a Text plugin.

Tab Sets

Bootstrap is shipped with CSS helpers to facilitate the creation of Tabs. In djangocms-cascade, such a Tab plugin can
be added anywhere inside columns or rows.

In the context menu of a placeholder, select Tab Set. Depending on the chosen number of children, it will add as many
Tab Pane**s. Each **Tab Pane has a Title field, its content is displayed in the tab. Below a Tab Pane you are free
to add whatever you want.

Secondary menu

Warning: This plugin is experimental. It may disappear or be replaced. Use it at your own risk!

28 Chapter 3. Contents:

http://getbootstrap.com/components/#panels
http://getbootstrap.com/javascript/#tabs

djangocms-cascade Documentation, Release 0.8.5

Often there is a need to add secondary menus at arbitrary locations. The Secondary menu plugin can be used in any
placeholder to display links onto child pages of a CMS page. Currently only pages marked as Soft Root with a defined
Page Id are allowed as parent of such a secondary menu.

Note: This plugins reqires the template tag main_menu_below_id which is shipped with djangocms-bootstrap3

3.6 Segmentation of the DOM

The SegmentationPlugin allows to personalize the DOM structure, depending on various parameters supplied with
the Django request object. Some use cases are:

• Depending on the user, show a different portion of the DOM, if he is a certain user or not logged in at all.

• Show different parts of the DOM, depending on the browsers estimated geolocation. Useful to render different
content depending on the visitors country.

• Show different parts of the DOM, depending on the supplied marketing channel.

• Show different parts of the DOM, depending on the content in the session objects from previous visits of the
users.

• Segment visitors into different groups used for A/B-testing.

3.6.1 Configuration

The SegmentationPlugin must be activated separately on top of other djangocms-cascade plugins. In
settings.py, add to

INSTALLED_APPS = (
...
'cmsplugin_cascade',
'cmsplugin_cascade.segmentation',
...

)

Then, depending on what kind of data shall be emulated, add a list of two-tuples to the configuration settings
CMSPLUGIN_CASCADE[’segmentation_mixins’]. The first entry of each two-tuple specifies the mixin class
added the the proxy model for the SegmentationPlugin. The second entry specifies the mixin class added the
the model admin class for the SegmentationPlugin.

this entry is optional:
CMSPLUGIN_CASCADE = {

...
'segmentation_mixins': (

('cmsplugin_cascade.segmentation.mixins.EmulateUserModelMixin', 'cmsplugin_cascade.segmentation.mixins.EmulateUserAdminMixin',), # the default
other segmentation plugin classes

),
...

}

3.6.2 Usage

When editing djangoCMS plugins in Structure mode, below the section Generic a new plugin type appears, named
Segment.

3.6. Segmentation of the DOM 29

https://github.com/jrief/djangocms-bootstrap3

djangocms-cascade Documentation, Release 0.8.5

This plugin now behaves as an if block, which is rendered only, if the specified condition evaluates to true. The
syntax used to specify the condition, is the same as used in the Django template language. Therefore it is possible to
evaluate against more than one condition and combine them with and, or and not as described in boolean operators
in the Django docs

Immediately below a segmentation block using the condition tag if, it is possible to use the tags elif or else. This
kind of conditional blocks is well known to Python programmers.

Note, that when rendering pages in djangoCMS, a RequestContext- rather than a Context-object is used. This Re-
questContext is populated by the user object if ’django.contrib.auth.context_processors.auth’
is added to your settings.py TEMPLATE_CONTEXT_PROCESSORS. This therefore is a prerequisite when the Seg-
mentation plugin evaluates conditions such as user.username == "john".

3.6.3 Emulating Users

As of version 0.5.0, in djangocms-cascade a staff user or administrator can emulate the currently logged in user. If
this plugin is activated, in the CMS toolbar a new menu tag appears named “Segmentation”. Here a staff user can
select another user. All evaluation conditions then evaluate against this selected user, instead of the currently logged
in user.

It is quite simple to add other overriding emulations. Have a look at the class
cmsplugin_cascade.segmentation.mixins.EmulateUserMixin. This class then has to be added to
your configuration settings CMSPLUGIN_CASCADE_SEGMENTATION_MIXINS. It then overrides the evaluation
conditions and the toolbar menu.

3.7 Working with sharable fields

Sometime you’d want to remember sizes, links or any other options for rendering a plugin instance across the project.
In order to not have to do this job for each managed entity, you can remember these settings using a name of your
choice, controllable in a special section of the administration backend.

Now, whenever someone adds a new instance using this plugin, a select box with these remembered settings appears.
He then can choose from one of the remembered settings, which frees him to reenter all the values.

30 Chapter 3. Contents:

https://docs.djangoproject.com/en/dev/ref/templates/builtins/#boolean-operators
https://docs.djangoproject.com/en/1.8/ref/templates/api/#django.template.RequestContext

djangocms-cascade Documentation, Release 0.8.5

3.7.1 Configure a Cascade Plugins to optionally share some fields

Configuring a plugin to share specific fields with other plugins of the same type is very easy. In the projects
settings.py, assure that ’cmsplugin_cascade.sharable’ is part of your INSTALLED_APPS.

Then add a dictionary of Cascade plugins, with a list of fields which shall be sharable. For example, with this settings,
the image plugin can be configured to share its sizes and rendering options among each other.

CMSPLUGIN_CASCADE = {
...
'plugins_with_sharables': {

'BootstrapImagePlugin': ('image-shapes', 'image-width-responsive', 'image-width-fixed', 'image-height', 'resize-options',),
},
...

}

3.7.2 Control some named settings

Whenever a plugin is configured to allow to share fields, at the bottom of the plugin editor a special field appears:

By activating the checkbox, adding an arbitrary name next to it and saving the plugin, an entity of sharable fields is
saved in the database. Now, whenever someone starts to edit a plugin of this type, a select box appears on the top of
the editor:

By choosing a previously named shared settings, the configured fields are disabled for input and replaced by their
shared field’s counterparts.

In order to edit these shared fields in the administration backend, one must access Home › Cmsplugin_cascade ›
Shared between Plugins. By choosing a named shared setting, one can enter into the shared field’s editor. This editor
auto adopts to the fields declared as shared, hence will change from entity to entity. For the above example, it may
look like this:

3.7. Working with sharable fields 31

djangocms-cascade Documentation, Release 0.8.5

In this editor one can change these shared settings globally, for all plugin instances where this named shared settings
have been applied to.

3.8 Customize CSS classes and inline styles

Plugins shipped with djangocms-cascade offer a basic set of CSS classes as declared by the chosen CSS framework.
These offered classes normally do not fulfill the requirements for real world sites.

While djangocms-cascade is easily extendible, it would be overkill to re-implement the available plugins, just to add
an extra field for a customized CSS class or an extra inline style. For that purpose, one can add a set of potential CSS
classes and potential CSS inline styles for Cascade plugins, enabled for this feature. Moreover, this feature can be
adopted individually on a per-site base.

32 Chapter 3. Contents:

djangocms-cascade Documentation, Release 0.8.5

3.8.1 Configure a Cascade plugins to accept extra fields

Configuring a plugin to allow an HTML id tag, an extra CSS classes or some inline styles is very easy. In the projects
settings.py, assure that ’cmsplugin_cascade.extra_fields’ is part of your INSTALLED_APPS.

Then add a list of Cascade plugins, which shall be extendible. It is a good idea to enable at least these plugins for
extendibility:

CMSPLUGIN_CASCADE = {
...
'plugins_with_extra_fields': ('BootstrapButtonPlugin', 'BootstrapRowPlugin',

'SimpleWrapperPlugin', 'HorizontalRulePlugin',
),
...

}

If at least one plugin has been added to this settings variable, the Django administration backend offers an additional
view:

Home › Cmsplugin_cascade › Custom CSS classes and styles › Add Custom CSS classes styles

Here the site administrator can specify, which extra CSS classes, ID tags and extra inline styles may be used by a
concrete plugin.

3.8.2 Configure the kind of extra inline styles a Cascade plugin may accept

By default, djangocms-cascade specifies a sensible set of CSS styles, which can be added to the Cascade plugins,
if enabled. This set however might not be enough for your installation and therefore can be extended by the settings
variable CMSPLUGIN_CASCADE[’extra_inline_styles’] containing an OrderedDict. The key element
is an arbitrary name. The value element is a 2-tuple whose first element is a list of CSS inline styles. The second
element of this tuple specifies the widget to be used to render the input fields.

Please check the default in cmsplugin_cascade/settings.py on how to set this list of extra inline styles.

3.8.3 Enable extra fields

To enable this feature, in the administration backend navigate to

Home › Cmsplugin_cascade › Custom CSS classes and styles and click onto the button named Add Custom CSS
classes styles.

From the field named “Plugin Name”, for instance select Bootstrap Simple Wrapper. Then, from the field named
“Site”, select the current site.

3.8. Customize CSS classes and inline styles 33

djangocms-cascade Documentation, Release 0.8.5

Allow ID

With “Allow id tag” enabled, an extra field will appear on the named plugin editor. There a user can add any arbitrary
name which will be rendered as id="any_name" for the corresponding plugin instance.

CSS classes

In the field named “CSS class names”, the administrator may specify arbitrary CSS classes separated by commas. One
of these CSS classes then can be added to the corresponding Cascade plugin. If more than one CSS class shall be

34 Chapter 3. Contents:

djangocms-cascade Documentation, Release 0.8.5

addable concurrently, activate the checkbox named “Allow multiple”.

CSS inline styles

The administrator may activate all kinds of CSS inline styles by clicking on the named checkbox. For settings describ-
ing distances, additionally specify the allowed units to be used.

Now, if a user opens the corresponding plugin inside the Structure View, he will see an extra select field to choose
the CSS class and some input fields to enter say, extra margins, heights or whatever has been activated.

Use it rarely, use it wise

Adding too many styling fields to a plugin can mess up any web project. Therefore be advised to use this feature rarely
and wise. If many people have write access to plugins, set extra permissions on this table, in order to not mess things
up. For instance, it rarely makes sense to activate min-width, width and max-width.

3.9 Chose an alternative rendering template

Sometimes you must render a plugin with a slightly different template, other than the given default. A possible solution
is to inherit from this template and override render_template. This however adds another plugin to the list of
registered CMS plugins.

A simpler solution to solve this problem is to allow a plugin to be rendered with a template out of a set of alternatives.

3.9.1 Change the path for template lookups

Some Bootstrap Plugins are shipped with templates, which are optimized to be rendered by Angular-UI rather than
the default jQuery. These alternative templates are located in the folder cascade/bootstrap3/angular-ui.
If your project uses AngularJS instead of jQuery, then configure the lookup path in settings.py with

CMSPLUGIN_CASCADE = {
...
'bootstrap3': {

...
'template_basedir': 'angular-ui',

},
}

This lookup path is applied only to the Plugin’s field render_template prepared for it. Such a template contains
the placeholder {}, which is expanded to the configured template_basedir.

For instance, the CarouselPlugin defines its render_template such as:

class CarouselPlugin(BootstrapPluginBase):
...
render_template = 'cascade/bootstrap3/{}/carousel.html'
...

3.9.2 Configure Cascade Plugins to be rendered using alternative templates

All plugins which offer more than one rendering template, shall be added in the projects settings.py to the dictio-
nary CMSPLUGIN_CASCADE[’plugins_with_extra_render_templates’]. Each item in this dictionary

3.9. Chose an alternative rendering template 35

http://angular-ui.github.io/bootstrap/versioned-docs/0.13.4/

djangocms-cascade Documentation, Release 0.8.5

consists of a key naming the plugin and a value containing a list of two-tuples. The first element of this two-tuple must
be the templates filename, while the second element shall contain an arbitrary name to identify that template.

Example:

CMSPLUGIN_CASCADE = {
...
'plugins_with_extra_render_templates': {

'TextLinkPlugin': (
('cascade/link/text-link.html', _("default")),
('cascade/link/text-link-linebreak.html', _("with linebreak")),

)
},
...

}

Usage

When editing a djangoCMS plugins with alternative rendering templates, the plugin editor adds a select box contain-
ing alternative rendering templates. Chose one other than the default, and the plugin will be rendered using this other
template.

3.10 The CMS Clipboard

DjangoCMS offers a Clipboard where one can copy or cut and add a subtree of plugins to the DOM. This Clipboard
is very handy when copying plugins from one placeholder to another one, or to another CMS page. In version 0.7.2
djangocms-cascade extended the functionality of this clipboard, so that the content of the CMS clipboard can be
persited to – and restored from the database. This allows the site-administrator to prepare a toolset of plugin-trees,
which can be inserted anywhere at any time.

3.10.1 Persisting the Clipboard

In the context menu of a CMS plugin, use Cut or Copy to move a plugin together with its children to the CMS
clipboard. In Edit Mode this clipboard is available from the primary menu item within the CMS toolbar. From this
clipboard, the copy plugins can be dragged and dropped to any CMS placeholder which is allowed to accept the root
node.

Since the content of the clipboard is overridden by every operation which cuts or copies a tree of plugins, djangocms-
cascade offers some functionality to persist the clipboard’s content. To do this, locate Persited Clipboard Content
in Django’s administration backend.

36 Chapter 3. Contents:

djangocms-cascade Documentation, Release 0.8.5

The Identifier field is used to give a unique name to the persited clipboard entity.

The Save button fetches the content from the CMS clipboard and persists it.

The Restore button replaces the content of the CMS clipboard with the current persisted entity. This is the opposite
operation of Save.

Since the clipboard content is serialized using JSON, the site administrator can grab and paste it into another site using
djangocms-cascade, if persisting clipboards are enabled.

Configuration

Persisting the clipboards content must be configured in the projects settings.py:

INSTALLED_APPS = (
...
'cmsplugin_cascade',
'cmsplugin_cascade.clipboard',
...

)

3.10. The CMS Clipboard 37

djangocms-cascade Documentation, Release 0.8.5

Caveats

Only CMS plugins from the Cascade eco-system are eligible to be used for persisting. This is because they already
use a JSON representation of their content. The only exception is the TextPlugin, since djangocms-cascade added
some serialization code.

3.11 Extending Cascade

All Cascade plugins are derived from the same base class CascadeModelBase, which stores all its model fields
inside a dictionary, serialized as JSON string in the database. This makes it much easier to extend the Cascade eco-
system, since no database migration is required when adding a new, or extending plugins from this project.

The database model CascadeModelBase stores all the plugin settings in a single JSON field named glossary.
This in practice behaves like a Django context, but in order to avoid confusion with the latter, it has been named
“glossary”.

Note: Custom Cascade plugins should set the app_label attribute (see below). This is important so migrations for
the proxy models generated by Cascade are created in the correct app.

If this attribute is not set, Cascade will default to the left-most part of the plugin’s module path. So if your plugin
lives in myapp.cascadeplugins, Cascade will use myapp as the app label. We recommend that you always set
app_label explicitly.

3.11.1 Simple Example

This plugin is very simple and just renders static content which has been declared in the template.

from cms.plugin_pool import plugin_pool
from cmsplugin_cascade.plugin_base import CascadePluginBase

class StylishPlugin(CascadePluginBase):
name = 'Stylish Element'
render_template = 'myapp/cascade/stylish-element.html'

plugin_pool.register_plugin(StylishPlugin)

If the editor form pops up for this plugin, a dumb message appears: “There are no further settings for this plugin”.
This is because no editable fields have been added to that plugin yet.

3.11.2 Customize Stored Data

In order to make the plugin remember its settings and other optional data, the programmer must add a list of special
form fields to its plugin. These fields then are used to auto-generate the editor for this DjangoCMS plugin.

Each of those form fields handle a special field value, or in some cases, a list of field values. They all require a widget,
which is used when rendering the editors form.

Lets add a simple selector to choose between a red and a green color. Do this by adding a PartialFormField to
a member list named glossary_fields.

38 Chapter 3. Contents:

djangocms-cascade Documentation, Release 0.8.5

from django.forms import widgets
from cmsplugin_cascade.plugin_base import CascadePluginBase, PartialFormField

class StylishPlugin(CascadePluginBase):
...
glossary_fields = (

PartialFormField('color',
widgets.Select(choices=(('red', 'Red'), ('green', 'Green'),)),
label="Element's Color",
initial='red',
help_text="Specify the color of the DOM element."

),
more PartialFormField objects

)

In the plugin’s editor, the form now pops up with a single select box, where the user can choose between a red and a
green element.

A PartialFormField accepts five arguments:

• The name of the field. It must be unique in the given list of glossary_fields.

• The widget. This can be a built-in Django widget or any valid widget derived from it.

• The label used to describe the field. If omitted, the name of the partial form field is used.

• An optional initial value to be used with Radio- or Select fields.

• An optional help_text to describe the field’s purpose.

3.11.3 Widgets for a Partial Form Field

For single text fields or select boxes, Django’s built-in widgets, such as widgets.TextInput or
widgets.RadioSelect can be used. Sometimes these simple widgets are not enough, therefore some spe-
cial input widgets have been prepared to be used with DjangoCMS-Cascade. They are all part of the module
cmsplugin_cascade.widgets.

MultipleTextInputWidget Use this widget to group a list of text input fields together. This for instance
is used, to encapsulate all inline styles into one JSON object.

NumberInputWidget The same as Django’s TextInput-widget, but doing field validation. This
checks if the entered input data is a valid number.

MultipleInlineStylesWidget The same as the MultipleTextInputWidget, but doing field valida-
tion. This checks if the entered input data ends with px or em.

3.11.4 Overriding the Form

For the plugin editor, djangocms-cascade automatically creates a form for each PartialFormField in the list
of glossary_fields. Sometimes however, you might need more control over the fields displayed in the editor,
versus the fields stored inside the glossary.

Similar to the Django’s admin.ModelAdmin, this can be achieved by overriding the plugins form element. Such a
customized form can add as many fields as required, while the controlled glossary contains a compact summary.

To override the plugins form, add a member form to your plugin. This member variable shall refer to a customized
form derived from forms.models.ModelForm. For further details about how to use this feature, refer to the
supplied implementations.

3.11. Extending Cascade 39

djangocms-cascade Documentation, Release 0.8.5

3.11.5 Overriding the Model

Since all djangocms-cascade plugins store their data in a JSON-serializable field, there rarely is a need to add another
database field to the common models CascadeElement and/or SharableCascadeElement and thus no need
for database migrations.

However, quite often there is a need to add or override the methods for these models. Therefore each Cas-
cade plugin creates its own proxy model on the fly. These models are derived from CascadeElement and/or
SharableCascadeElement and named like the plugin class, with the suffix Model. By default, their behavior
is the same as for their parent model classes.

To extend this behavior, the author of a plugin may declare a tuple of mixin classes, which are injected during the
creation of the proxy model. Example:

class MySpecialPropertyMixin(object):
def processed_value(self):

value = self.glossary.get('field_name')
process value
return value

class MySpecialPlugin(LinkPluginBase):
module = 'My Module'
name = 'My special Plugin'
model_mixins = (MySpecialPropertyMixin,)
render_template = 'my_module/my_special_plugin.html'
glossary_fields = (

PartialFormField('field_name',
widgets.TextInput(),

),
other partial form fields

)
...

The proxy model created for this plugin class, now contains the extra method content(), which for instance may
be accessed during template rendering.

templates/my_module/my_special_plugin.html:

<div>{{ instance.processed_value }}</div>

Needless to say, that you can’t add any extra database fields to the class named MySpecialPropertyMixin, since
the corresponding model class is marked as proxy.

3.11.6 Plugin Attribute Reference

CascadePluginBase is derived from CMSPluginBase, so all CMSPluginBase attributes can also be overridden
by plugins derived from CascadePluginBase. Please refer to their documentation for details.

Additionally BootstrapPluginBase allows the following attributes:

name This name is shown in the pull down menu in structure view. There is not default value.

app_label The app_label to use on generated proxy models. This should usually be the same as the
app_label of the app that defines the plugin.

tag_type A HTML element into which this plugin is wrapped. Generic templates can render their content
into any ‘‘tag_type. Specialized rendering templates usually have a hard coded tag type, then this
attribute can be omitted.

40 Chapter 3. Contents:

https://docs.djangoproject.com/en/dev/topics/db/models/#proxy-models
https://django-cms.readthedocs.org/en/develop/extending_cms/custom_plugins.html#plugin-attribute-reference

djangocms-cascade Documentation, Release 0.8.5

require_parent Default: True. This differs from CMSPluginBase.

Is it required that this plugin is a child of another plugin? Otherwise the plugin can be added to any
placeholder.

parent_classes Default: None.

A list of Plugin Class Names. If this is set, the plugin may only be added to plugins listed here.

allow_children Default: True. This differs from CMSPluginBase.

Can this plugin have child plugins? Or can other plugins be placed inside this plugin?

child_classes Default: A list of plugins, which are allowed as children of this plugin. This differs from
CMSPluginBase, where this attribute is None.

Do not override this attribute. DjangoCMS-Cascade automatically generates a list of allowed chil-
dren plugins, by evaluating the list parent_classes from the other plugins in the pool.

Plugins, which are part of the plugin pool, but which do not specify their parents using the list
parent_classes, may be added as children to the current plugin by adding them to the attribute
generic_child_classes.

generic_child_classes Default: None.

A list of plugins which shall be added as children to a plugin, but which themselves do not declare
this plugin in their parent_classes.

glossary_fields Default: None

A list of PartialFormField‘s. See the documentation above for details.

default_css_class Default: None.

A CSS class which is always added to the wrapping DOM element.

default_inline_styles Default: None.

A dictionary of inline styles, which is always added to the wrapping DOM element.

get_identifier This is a classmethod, which can be added to a plugin to give it a meaningful name.

Its signature is:

@classmethod
def get_identifier(cls, obj):

return 'A plugin name'

This method shall be used to name the plugin in structured view.

form Override the form used by the plugin editor. This must be a class derived from
forms.models.ModelForm.

model_mixins Tuple of mixin classes, with additional methods to be added the auto-generated proxy
model for the given plugin class.

Check section “Overriding the Model” for a detailed explanation.

3.12 Generic Plugins

Cascade is shipped with a few plugins, which can be used independently of the underlying CSS framework. To avoid
duplication, they are bundled into the section Generic and are available by default in the placeholders context menu.

3.12. Generic Plugins 41

djangocms-cascade Documentation, Release 0.8.5

All these plugins qualify as plugins with extra fields, which means that they can be configured by the site administrator
to accept additional CSS styles and classes.

3.12.1 SimpleWrapperPlugin

Use this plugin to add a wrapping element around a group of other plugins. Currently these HTML elements can be
used as wrapper: <div>, , <section>, <article>. There is one special wrapper named naked. It
embeds its children only logically, without actually embedding them into any HTML element.

3.12.2 HorizontalRulePlugin

This plugins adds a horizontal rule <hr> to the DOM. It is suggested to enable the margin-top and
margin-bottom CSS styles, so that the ruler can be positioned appropriately.

3.12.3 HeadingPlugin

This plugins adds a text heading <h1>...‘‘<h6>‘‘ to the DOM. Although simple headings can be achieved with the
TextPlugin, there they can’t be styled using special CSS classes or styles. Here the HeadingPlugin can be used, since
any allowed CSS class or style can be added.

3.12.4 CustomSnippetPlugin

Not every collection of DOM elements can be composed using the Cascade plugin system. Sometimes one might want
to add a simple HTML snippet. Altough it is quite simple to create a customized plugin yourself, an easier approach
to just render an arbitrary HTML snippet, is to use the CustomSnippetPlugin. This can be achieved by adding the
customized template to the project’s settings.py:

CMSPLUGIN_CASCADE = {
other settings
'plugins_with_extra_render_templates': {

'CustomSnippetPlugin': (
('myproject/snippets/custom-template.html', "Custom Template Identifier"),
other tuples

),
},

}

Now, when editing the page, a plugin named Custom Snippet appears in the Generic section in the plugin’s dropdown
menu. This plugin then offers a select element, where the site editor then can chose between the configured templates.

Adding children to a CustomSnippetPlugin

It is even possible to add children to the CustomSnippetPlugin. Simple add these templatetag_s to the customized
template, and all plugins which are children of the CustomSnippetPlugin will be rendered as well.

{% load cms_tags %}
<wrapping-element>
{% for plugin in instance.child_plugin_instances %}

{% render_plugin plugin %}
{% endfor %}
</wrapping-element>

42 Chapter 3. Contents:

djangocms-cascade Documentation, Release 0.8.5

3.13 Release History

3.13.1 0.8.5

• Dropped support for Python-2.6.

3.13.2 0.8.4

• Fixed a regression in “Restore from clipboard”.

• Fixed TextLinkPlugin to work again as child of TextPlugin.

• ContainerPlugin can only be added below a placeholder.

• Prepared demo to work with Django-1.10.

• Plugins marked as “transparent” are only allowed as parents, if they allow children.

3.13.3 0.8.3

• Added CustomSnippetPlugin. It allows to add arbitrary custom templates to the project.

• Fixed #160: Error copying Carousel plugin

• Plugins marked as “transparent” can be parents of everybody.

• BootstrapPanelPlugin now accepts inline CSS styles.

3.13.4 0.8.2

• Cascade does not create migrations for proxy models anymore. This created major problems if Cascade com-
ponents have been switched on and off. All existing migrations of proxy models have been removed from the
migration files.

• Fixed: Response of more than one entry on non unique clipboards.

• Added cmsplugin_cascade.models.SortableInlineCascadeElement which can be used for
keeping sorted inline elements.

• cmsplugin_cascade.bootstrap3.gallery.BootstrapGalleryPlugin can sort its images.

3.13.5 0.8.1

• Hotfix: removed invalid dependency in migration 0007.

3.13.6 0.8.0

• Compatible with Django-1.9

• Fixed #133: BootstrapPanelPlugin now supports custom CSS classes.

• Fixed #132: Carousel Slide plugin with different form.

• Fixed migration problems for proxy models outside Cascade.

• Replaced SelectMultiple against CheckboxSelectMultiple in admin for extra fields.

3.13. Release History 43

djangocms-cascade Documentation, Release 0.8.5

• Removed SegmentationAdmin from admin backend.

• Disallow whitespace in CSS attributes.

• Require django-reversion 1.10.1 or newer.

• Require django-polymorphic 0.9.1 or newer.

• Require django-filer 1.1.1 or newer.

• Require django-treebeard 4.0 or newer.

• Require django-sekizai 0.9.0 or newer.

3.13.7 0.7.3

• Use the outer width for fluid containers. This allows us to add images and carousels which extend the the
browser’s edges.

• Fixed #132: Carousel Slide plugin different form.

• Fixed #133: BootstrapPanelPlugin does not support custom CSS classes.

• Fixed #134: More plugins can be children of the SimpleWrapperPlugin. This allows us to be more flexible
when building the DOM tree.

• BootstrapContainerPlugin now by default accepts extra inline styles and CSS classes.

3.13.8 0.7.2

• Add a possibility to prefix Cascade plugins with a symbol of your choice, to avoid confusion if the same name
has been used by another plugin.

• All Bootstrap plugins can override their templates globally though a configuration settings variable. Usefule to
switch between jQuery and AngularJS versions of a widget.

• Added TabSet and TabPanel plugins.

• It is possible to persist the content of the clipboard in the database, retrieve and export it as JSON to be reim-
ported on an unrelated site.

3.13.9 0.7.1

• Added a HeadingPlugin to add single text headings independently of the HTML TextEditorPlugin.

3.13.10 0.7.0

Cleanup release, removing a lot of legacy code. This adds some incompatibilities to previous versions:

• Instead of half o dozen of configuration directives, now one Python dict is used. Therefore check your
settings.py for configurations starting with CMSPLUGIN_CASCADE_....

• Tested with Django-1.8. Support for version 1.7 and lower has been dropped.

• Tested with djangoCMS version 3.2. Support for version 3.0 and lower has been dropped.

• Tested with django-select2 version 5.2. Support for version 4 has been dropped.

• The demo project now uses SASS instead of plain CSS, but SASS is not a requirement during normal develop-
ment.

44 Chapter 3. Contents:

djangocms-cascade Documentation, Release 0.8.5

3.13.11 0.6.2

• In Segment: A condition raising a TemplateSyntaxError now renders that error inside a HTML comment. This
is useful for debugging non working conditions.

• In Segment: An alternative AdminModel to UserAdmin, using a callable instead of a model field, now works.

• In Segment: It is possible to use segmentation_list_display = (list-of-fields) in an alter-
native AdminModel, to override the list view, when emulating a user.

3.13.12 0.6.1

• Added a panel plugin to support the Bootstrap Panel.

• Added experimental support for secondary menus.

• Renamed AccordionPlugin to BootstrapAccordionPlugin for consistency and to avoid future
naming conflicts.

3.13.13 0.6.0

• Fixed #79: The column width is not reduced in width, if a smaller column precedes a column for a smaller
displays.

• Fixed: Added extra space before left prefix in buttons.

• Enhanced: Access the link content through the glossary’s link_content.

• New: Plugins now can be rendered using an alternative template, choosable through the plugin editor.

• Fixed in SegmentationPlugin: When overriding the context, this updated context was only used for the immedi-
ate child of segment. Now the overridden context is applied to all children and grandchildren.

• Changed in SegmentationPlugin: When searching for siblings, use a list index instead of
get_children().get(position=...).

• Added unit tests for SegmentationPlugin.

• Added support for django-reversion.

• By using the setting CMSPLUGIN_CASCADE_LINKPLUGIN_CLASSES, one can replace the class
LinkPluginBase by an alternative implementation.

• When using Extra Styles distances now can have negative values.

• In caption field of CarouselSlidePlugin it now is possible to set links onto arbitrary pages.

Possible backwards incompatibility:

• For consistency with naming conventions on other plugins, renamed cascade/plugins/link.html ->
cascade/link/link-base.html. Check your templates!

• The setting CMSPLUGIN_CASCADE_SEGMENTATION_MIXINS now is a list of two-tuples, where the first
declares the plugin’s model mixin, while the second declares the model admin mixin.

• Removed from setting: CMSPLUGIN_CASCADE_BOOTSTRAP3_TEMPLATE_DIR. The rendering template
now can be specified during runtime.

• Refactored and moved SimpleWrapperPlugin and HorizontalRulePlugin from
cmsplugin_cascade/bootstrap3/ into cmsplugin_cascade/generic/. The glossary
field element_tag has been renamed to tag_type.

3.13. Release History 45

djangocms-cascade Documentation, Release 0.8.5

• Refactored LinkPluginBase so that external implementations can create their own version, which then is
used as base for TextLinkPlugin, ImagePlugin and PicturePlugin.

• Renamed: PanelGroupPlugin -> Accordion, PanelPlugin -> AccordionPanelPlugin, be-
cause the Bootstrap project renamed them back to their well known names.

3.13.14 0.5.0

• Added SegmentationPlugin. This allows to conditionally render parts of the DOM, depending on the status of
various request object members, such as user.

• Setting CASCADE_LEAF_PLUGINS has been replaced by CMSPLUGIN_CASCADE_ALIEN_PLUGINS. This
simplifies the programming of third party plugins, since the author of a plugin now only must set the member
alien_child_classes = True.

3.13.15 0.4.5

• Fixed: If no breakpoints are set, don’t delete widths and offsets from the glossary, as otherwise this information
is lost.

• Fixed broken import for PageSelectFormField when not using django_select2.

• Admin form for PluginExtraFields now is created on the fly. This fixes a rare circular dependency issue,
when accessing plugin_pool.get_all_plugins().

3.13.16 0.4.4

• Removed hard coded input fields for styling margins from BootstrapButtonPlugin, since it is possible to add
them through the Extra Fields dialog box.

• [Column ordering](http://getbootstrap.com/css/#grid-column-ordering) using col-xx-push-n and
col-xx-pull-n has been added.

• Fixed: Media file linkplugin.js was missing for BootstrapButtonPlugin.

• Hard coded configuration option EXTRA_INLINE_STYLES can now be overridden by the projects settings

3.13.17 0.4.3

• The templatetag bootstrap3_tags and the templates to build Boostrap3 styled menus, breadcrumbs and
paginator, have been moved into their own repository at https://github.com/jrief/djangocms-bootstrap3.

• Column ordering using col-xx-push-n and col-xx-pull-n has been added.

3.13.18 0.4.2

• Fixed: Allow empty setting for CMSPLUGIN_CASCADE_PLUGINS

• Fixed: Use str(..) instead of b” in combination with from __future__ import unicode_literals

46 Chapter 3. Contents:

http://getbootstrap.com/css/#grid-column-ordering
https://github.com/jrief/djangocms-bootstrap3
http://getbootstrap.com/css/#grid-column-ordering

djangocms-cascade Documentation, Release 0.8.5

3.13.19 0.4.1

• Fixed: Exception when saving a ContainerPlugin with only one breakpoint.

• The required flag on a field for an inherited LinkPlugin is set to False for shared settings.

• Fixed: Client side code for disabling shared settings did not work.

3.13.20 0.4.0

• Renamed context from model CascadeElement to glossary‘. The identifier ‘‘context
lead to too much confusion, since it is used all way long in other CMS plugins, where it has a complete different
meaning.

• Renamed partial_fields in all plugins to glossary_fields, since that’s the model field where they
keep their information.

• Huge refactoring of the code base, allowing a lot of more features.

3.13.21 0.3.2

• Fixed: Missing unicode conversion for method get_identifier()

• Fixed: Exception handler for form validation used getattr incorrectly.

3.13.22 0.3.1

• Added compatibility layer for Python-3.3.

3.13.23 0.3.0

• Complete rewrite. Now offers elements for Bootstrap 3 and other CSS frameworks.

3.13.24 0.2.0

• Added carousel.

3.13.25 0.1.2

• Fixed: Added missign migration.

3.13.26 0.1.1

• Added unit tests.

3.13.27 0.1.0

• First published revision.

3.13. Release History 47

djangocms-cascade Documentation, Release 0.8.5

Thanks

This DjangoCMS plugin originally was derived from https://github.com/divio/djangocms-style, so the honor for the
idea of this software goes to Divio and specially to Patrick Lauber, aka digi604.

However, since my use case is different, I removed all the existing code and replaced it against something more generic
suitable to add a collection of highly configurable plugins.

48 Chapter 3. Contents:

https://github.com/divio/djangocms-style

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

49

	Project's home
	Project's goals
	Contents:
	For the Impatient
	Introduction
	Installation
	Link Plugin
	Bootstrap 3 Grid system
	Segmentation of the DOM
	Working with sharable fields
	Customize CSS classes and inline styles
	Chose an alternative rendering template
	The CMS Clipboard
	Extending Cascade
	Generic Plugins
	Release History

	Indices and tables

