

Welcome to DjangoCMS-Cascade’s documentation

Project’s home

Check for the latest release of this project on GitHub [https://github.com/jrief/djangocms-cascade].

Please report bugs or ask questions using the Issue Tracker [https://github.com/jrief/djangocms-cascade/issues].

Project’s goals

	Create a modular system, which allows programmers to add simple widget code, without having to
implement an extra djangoCMS [https://www.django-cms.org/] plugins for each of them.

	Make available a meaningful subset of widgets as available for the most common CSS frameworks,
such as Twitter Bootstrap [http://getbootstrap.com/]. With these special plugins, in many configurations, djangoCMS
can be operated using one single template, containing one generic placeholder.

	Extend this djangoCMS plugin, to be used with other CSS frameworks such as Foundation 5 [http://foundation.zurb.com/],
Unsemantic [http://unsemantic.com/] and others.

	Use the base functionality of djangoCMS-Cascade to easily add special plugins. For instance,
djangoSHOP [https://www.django-shop.org/] implements all its cart and checkout specific forms this way.

Contents:

	1. For the Impatient
	1.1. Create a Python Virtual Environment

	2. Introduction
	2.1. Extensibility

	3. Installation
	3.1. Python Package Dependencies

	3.2. Create a database schema

	3.3. Install Dependencies not handled by PIP

	3.4. Configuration

	3.5. Template Customization

	4. Link Plugin
	4.1. Prerequisites

	4.2. Link Plugin with Sharable Fields

	4.3. Extending the Link Plugin

	4.4. Using Links in your own Plugins

	5. Plugins for Bootstrap-3
	5.1. Gallery

	5.2. Bootstrap 3 Grid system

	5.3. HTML5 <picture> and the new elements

	5.4. Template tag for the Bootstrap3 Navbar

	5.5. Panel element

	5.6. Jumbotron

	5.7. Tab Sets

	5.8. Secondary menu

	6. Using Fonts with Icons
	6.1. Introduction

	6.2. Uploading the Font

	6.3. Using the Icon Plugin

	6.4. Using the Icon Plugin in plain text

	7. Map Plugin using the Leaflet frontend
	7.1. Installation

	7.2. Configuration

	7.3. Usage

	7.4. Alternative Tiles

	7.5. Default Starting Position

	8. Handling the client side
	8.1. Implementing the client

	8.2. Plugin Inheritance

	9. Section Bookmarks
	9.1. Configuration

	9.2. Usage

	9.3. Hyperlinking to a Bookmark

	10. Segmentation of the DOM
	10.1. Configuration

	10.2. Usage

	10.3. Emulating Users

	11. Working with sharable fields
	11.1. Configure a Cascade Plugins to optionally share some fields

	11.2. Control some named settings

	12. Customize CSS classes and inline styles
	12.1. Configure a Cascade plugins to accept extra fields

	12.2. Enable extra fields through the administration backend

	12.3. Dynamically add styles to the Text-Editor

	13. Choose an alternative rendering template
	13.1. Change the path for template lookups

	13.2. Configure Cascade Plugins to be rendered using alternative templates

	14. Conditionally hide some plugin
	14.1. Enable the meachanism

	15. The CMS Clipboard
	15.1. Persisting the Clipboard

	16. Use Cascade outside of the CMS
	16.1. Usage

	16.2. In Templates

	16.3. Caveats when creating your own Plugins

	16.4. Caching

	17. Integrate Sphinx Documentation
	17.1. Configuration

	17.2. Integration with the CMS

	18. Extending Cascade
	18.1. Simple Example

	18.2. Customize the Plugin Editor

	18.3. Special Form Field for Plugin Editors

	18.4. Overriding the Model

	18.5. Transparent Plugins

	18.6. Plugin Attribute Reference

	18.7. Plugin Permissions

	19. Generic Plugins
	19.1. SimpleWrapperPlugin

	19.2. HorizontalRulePlugin

	19.3. HeadingPlugin

	19.4. CustomSnippetPlugin

	20. Release History
	20.1. 1.1.9

	20.2. 1.1.8

	20.3. 1.1.7

	20.4. 1.1.6

	20.5. 1.1.5

	20.6. 1.1.4

	20.7. 1.1.3

	20.8. 1.1.2

	20.9. 1.1.1

	20.10. 1.1

	20.11. 1.0 (Warning: API changes!)

	20.12. 0.19

	20.13. 0.18.2

	20.14. 0.18.1

	20.15. 0.18

	20.16. 0.17.10

	20.17. 0.17.9

	20.18. 0.17.8

	20.19. 0.17.7

	20.20. 0.17.6

	20.21. 0.17.5

	20.22. 0.17.4

	20.23. 0.17.3

	20.24. 0.17.2

	20.25. 0.17.1

	20.26. 0.17

	20.27. 0.16.3

	20.28. 0.16.2

	20.29. 0.16.1

	20.30. 0.16

	20.31. 0.15.5

	20.32. 0.15.4

	20.33. 0.15.3

	20.34. 0.15.1 and 0.15.2

	20.35. 0.15

	20.36. 0.14.4

	20.37. 0.14.3

	20.38. 0.14.2

	20.39. 0.14.1

	20.40. 0.14

	20.41. 0.13.1

	20.42. 0.13

	20.43. 0.12.5

	20.44. 0.12.4

	20.45. 0.12.3

	20.46. 0.12.2

	20.47. 0.12.1

	20.48. 0.12.0

	20.49. 0.11.1

	20.50. 0.11.0

	20.51. 0.10.2

	20.52. 0.10.1

	20.53. 0.10.0

	20.54. 0.9.4

	20.55. 0.9.3

	20.56. 0.9.2

	20.57. 0.9.1

	20.58. 0.9.0

	20.59. 0.8.5

	20.60. 0.8.4

	20.61. 0.8.3

	20.62. 0.8.2

	20.63. 0.8.1

	20.64. 0.8.0

	20.65. 0.7.3

	20.66. 0.7.2

	20.67. 0.7.1

	20.68. 0.7.0

	20.69. 0.6.2

	20.70. 0.6.1

	20.71. 0.6.0

	20.72. 0.5.0

	20.73. 0.4.5

	20.74. 0.4.4

	20.75. 0.4.3

	20.76. 0.4.2

	20.77. 0.4.1

	20.78. 0.4.0

	20.79. 0.3.2

	20.80. 0.3.1

	20.81. 0.3.0

	20.82. 0.2.0

	20.83. 0.1.2

	20.84. 0.1.1

	20.85. 0.1.0

	20.86. Thanks

Indices and tables

	Index

	Module Index

	Search Page

1. For the Impatient

This HowTo gives you a quick instruction on how to get a demo of djangocms-cascade up and
running. It also is a good starting point to ask questions or report bugs, since its backend is
used as a fully functional reference implementation, used by the unit tests of project.

1.1. Create a Python Virtual Environment

To keep environments separate, create a virtual environment and install external dependencies.
Missing packages with JavaScript files and Style Sheets, which are not available via pip must be
installed via npm:
Dependency packaging to made easy with Pipenv or Poetry.

$ git clone --depth=1 https://github.com/jrief/djangocms-cascade.git
$ cd djangocms-cascade/examples/
$ python -m venv .venv
$ poetry shell
$ poetry update

Initialize the database, create a superuser and start the development server:

$ cd examples
$ npm install
$./manage.py migrate
$./manage.py createsuperuser
$./manage.py runserver

Point a browser to http://localhost:8000/?edit and log in as the super user you just
created. Hit “next” and fill out the form to create your first page. Afterwards, click Structure
on the top of the page. A heading named Main Content appears, it symbolizes our main
django-CMS Placeholder.

Locate the plus sign right to the heading and click on it. From its context menu select
Container located in the section Bootstrap:

[image: add-container]

This brings you into the editor mode for a Bootstrap container. To this container you may add one or
more Bootstrap Rows. Inside these rows you may organize the layout using some Bootstrap
Columns.

Please proceed with the detailled explanation on how to use the
Bootstrap’s grid system within djangocms-cascade.

2. Introduction

DjangoCMS-Cascade is a collection of plugins for Django-CMS [https://github.com/divio/django-cms/] >=3.3 to add various HTML elements
from CSS frameworks, such as Twitter Bootstrap [http://getbootstrap.com/] to the Django templatetag [https://docs.djangoproject.com/en/dev/howto/custom-template-tags/] placeholder [https://django-cms.readthedocs.org/en/latest/advanced/templatetags.html#placeholder]. This
Django App makes it very easy to add other CSS frameworks, or to extend an existing collection with
additional elements.

DjangoCMS-Cascade allows web editors to layout their pages, without having to create different
Django templates [https://docs.djangoproject.com/en/dev/topics/templates/] for each layout modification. In most cases, one template with one single
placeholder is enough. The editor then can subdivide that placeholder into rows and columns, and
add additional DOM [http://www.w3.org/DOM/] elements such as buttons, rulers, or even the Bootstrap Carousel. Some basic
understanding on how the DOM works is required though.

Twitter Bootstrap is a well documented CSS framework which gives web designers lots of
possibilities to add a consistent structure to their pages. This collection of Django-CMS plugins [https://django-cms.readthedocs.org/en/latest/getting_started/plugin_reference.html]
offers a subset of these predefined elements to web designers.

2.1. Extensibility

This module requires one database table with one column to store all data in a JSON object. All
DjangoCMS-Cascade plugins share this same model, therefore they can be easily extended, because
new data structures are added to that JSON object without requiring a database migration.

Another three database tables are required for additional optional features.

2.1.1. Naming Conflicts

Some djangoCMS plugins may use the same name as plugins from djangocms-cascade. To prevent
confusion, since version 0.7.2, all Cascade plugins as prefixed with a Ϟ (koppa) symbol. This can
be deactivated or changed by setting CMSPLUGIN_CASCADE['plugin_prefix'] to False or any
other symbol.

3. Installation

Install the latest stable release

$ pip install djangocms-cascade

or the current development release from github

$ pip install -e git+https://github.com/jrief/djangocms-cascade.git#egg=djangocms-cascade

3.1. Python Package Dependencies

Due to some incompatibilities in the API of Django, django-CMS and djangocms-text-ckeditor, please
only use these combinations of Python package dependencies:

3.1.1. djangocms-cascade-0.11.x

	Django [http://djangoproject.com/] >=1.8, <=1.9

	Django-CMS [https://www.django-cms.org/] >=3.2, <=3.3

	djangocms-text-ckeditor [https://github.com/divio/djangocms-text-ckeditor] == 3.0

3.1.2. djangocms-cascade-0.12.x

	Django [http://djangoproject.com/] >=1.9, <1.11

	Django-CMS [https://www.django-cms.org/] >=3.4.3

	djangocms-text-ckeditor [https://github.com/divio/djangocms-text-ckeditor] >= 3.3

3.1.3. djangocms-cascade-0.13.x

	Django [http://djangoproject.com/] >=1.9, <1.11

	Django-CMS [https://www.django-cms.org/] >=3.4.3

	djangocms-text-ckeditor [https://github.com/divio/djangocms-text-ckeditor] >= 3.4

3.1.4. djangocms-cascade-0.14.x

	Django [http://djangoproject.com/] >=1.9, <1.11

	Django-CMS [https://www.django-cms.org/] >=3.4.4

	djangocms-text-ckeditor [https://github.com/divio/djangocms-text-ckeditor] >= 3.4

	django-filer [https://github.com/divio/django-filer] >= 1.2.8

3.1.5. djangocms-cascade-0.17.x - 0.19.x

	Django [http://djangoproject.com/] >=1.10, <2.0

	Django-CMS [https://www.django-cms.org/] >=3.4.4, <=3.6

	djangocms-text-ckeditor [https://github.com/divio/djangocms-text-ckeditor] >= 3.4

3.1.6. djangocms-cascade-1.0.x

	Django [http://djangoproject.com/] >=1.11, <=2.1

	Django-CMS [https://www.django-cms.org/] >=3.5.3, <=3.6.x

	djangocms-text-ckeditor [https://github.com/divio/djangocms-text-ckeditor] >= 3.7

other combinations might work, but have not been tested.

3.1.7. Optional packages

If you intend to use Image, Picture, Jumbotron, or FontIcons you will have to install django-filer
in addition:

$ pip install django-filer

For a full list of working requirements see the requirements folder [https://github.com/jrief/djangocms-cascade/tree/master/requirements] in the sources.

3.2. Create a database schema

./manage.py migrate cmsplugin_cascade

3.3. Install Dependencies not handled by PIP

Since the Bootstrap CSS and other JavaScript files are part of their own repositories, they are
not shipped within this package. Furthermore, as they are not part of the PyPI network, they have
to be installed through the Node Package Manager [https://nodejs.org/en/download/], npm.

In your Django projects it is good practice to keep a reference onto external node modules using
the file packages.json added to its own version control repository, rather than adding the
complete node package.

cd my-project-dir
npm init
npm install bootstrap@3 bootstrap-sass@3 jquery@3 leaflet@1 leaflet-easybutton@2.2 picturefill select2@4 --save

If the Django project contains already a file named package.json, then skip the npm init
in the above command.

The node packages leaflet and leaflet-easybutton are only required if the Leaflet plugin
is activated.

The node packages picturefill is a shim to support the srcset and sizes attributes on
 elements. Please check browser support [https://caniuse.com/#search=srcset] if that feature is required in your
project.

The node packages select2 is required for autofilling the select box in Link plugins. It is
optional, but strongly suggested.

Remember to commit the changes in package.json into the projects version control repository.

Since these Javascript and Stylesheet files are located outside of the project’s static folder,
we must add them explicitly to our lookup path, using STATICFILES_DIRS in settings.py:

STATICFILES_DIRS = [
 ...
 ('node_modules', os.path.join(MY_PROJECT_DIR, 'node_modules')),
]

3.3.1. Using AngularJS instead of jQuery

If you prefer AngularJS over jQuery, then replace the above install command with:

npm install bootstrap@3 bootstrap-sass@3 angular@1.5 angular-animate@1.5 angular-sanitize@1.5 angular-ui-bootstrap@0.14 leaflet@1 leaflet-easybutton@2.2 picturefill select2@4 --save

Remember to point to the prepared AngularJS templates using this setting:

CMSPLUGIN_CASCADE = {
 ...
 'bootstrap3': {
 'template_basedir': 'angular-ui',
 },
 ...
}

3.4. Configuration

Add 'cmsplugin_cascade' to the list of INSTALLED_APPS in the project’s settings.py
file. Optionally add ‘cmsplugin_cascade.extra_fields’ and/or ‘cmsplugin_cascade.sharable’ to
the list of INSTALLED_APPS. Make sure that these entries are located before the entry cms.

3.4.1. Configure the CMS plugin

INSTALLED_APPS = (
 ...
 'cmsplugin_cascade',
 'cmsplugin_cascade.clipboard', # optional
 'cmsplugin_cascade.extra_fields', # optional
 'cmsplugin_cascade.sharable', # optional
 'cmsplugin_cascade.segmentation', # optional
 'cms',
 ...
)

3.4.2. Activate the plugins

By default, no djangocms-cascade plugins is activated. Activate them in the project’s
settings.py with the directive CMSPLUGIN_CASCADE_PLUGINS.

To activate all available Bootstrap plugins, use:

CMSPLUGIN_CASCADE_PLUGINS = ['cmsplugin_cascade.bootstrap3']

If for some reason, only a subset of the available Bootstrap plugins shall be activated, name each
of them. If for example, only the grid system shall be used but no other Bootstrap plugins, then
configure:

CMSPLUGIN_CASCADE_PLUGINS = ['cmsplugin_cascade.bootstrap3.container']

A very useful plugin is the LinkPlugin. It superseds the djangocms-link [https://github.com/divio/djangocms-link]-plugin, normally used
together with the CMS.

CMSPLUGIN_CASCADE_PLUGINS.append('cmsplugin_cascade.link')

If this plugin is enabled ensure, that the node package select2 has been installed and findable
by the static files finder using these directives in settings.py:

SELECT2_CSS = 'node_modules/select2/dist/css/select2.min.css'
SELECT2_JS = 'node_modules/select2/dist/js/select2.min.js'

generic-plugins which are not opinionated towards a specific CSS framework, are kept in a
separate folder. It is strongly suggested to always activate them:

CMSPLUGIN_CASCADE_PLUGINS.append('cmsplugin_cascade.generic')

Sometimes it is useful to do a segmentation. Activate this by adding its plugin:

CMSPLUGIN_CASCADE_PLUGINS.append('cmsplugin_cascade.segmentation')

When icon-fonts: on your site, add 'cmsplugin_cascade.icon' to INSTALLED_APPS
and add it to the configured Cascade plugins:

CMSPLUGIN_CASCADE_PLUGINS.append('cmsplugin_cascade.icon')

3.4.3. Special settings when using the TextPlugin

Since it is possible to add plugins from the Cascade ecosystem as children to the
djangocms-text-ckeditor [https://github.com/divio/djangocms-text-ckeditor], we must add a special configuration:

from django.core.urlresolvers import reverse_lazy
from django.utils.text import format_lazy

CKEDITOR_SETTINGS = {
 'language': '{{ language }}',
 'skin': 'moono-lisa',
 'toolbar': 'CMS',
 'stylesSet': format_lazy('default:{}', reverse_lazy('admin:cascade_texteditor_config')),
}

The last line in this configuration invokes a special function, which adds special configuration settings to the
CKTextEditor plugin.

Note

The skin moono-lisa has been introduced in Django CKEditor version 3.5, so if you upgrade from an earlier
version, please adopt this in your settings.

3.4.4. Restrict plugins to a particular placeholder

Warning

You must set parent_classes for your placeholder, else you
won’t be able to add a container to your placeholder. This means that as an
absolute minimum, you must add this to your settings:

CMS_PLACEHOLDER_CONF = {
 ...
 'content': {
 'parent_classes': {'BootstrapContainerPlugin': None,},
 },
 ...
}

Unfortunately django-CMS does not allow to declare dynamically which plugins are eligible to be
added as children of other plugins. This is determined while bootstrapping the Django project and
thus remains static. We therefore must somehow trick the CMS to behave as we want.

Say, our Placeholder named “Main Content” shall accept the BootstrapContainerPlugin as its only
child, we then must use this CMS settings directive:

CMS_PLACEHOLDER_CONF = {
 ...
 'Main Content Placeholder': {
 'plugins': ['BootstrapContainerPlugin'],
 'text_only_plugins': ['TextLinkPlugin'],
 'parent_classes': {'BootstrapContainerPlugin': None},
 'glossary': {
 'breakpoints': ['xs', 'sm', 'md', 'lg'],
 'container_max_widths': {'xs': 750, 'sm': 750, 'md': 970, 'lg': 1170},
 'fluid': False,
 'media_queries': {
 'xs': ['(max-width: 768px)'],
 'sm': ['(min-width: 768px)', '(max-width: 992px)'],
 'md': ['(min-width: 992px)', '(max-width: 1200px)'],
 'lg': ['(min-width: 1200px)'],
 },
 },
 },
 ...
}

Here we add the BootstrapContainerPlugin to plugins and parent_classes. This is because
the Container plugin normally is the root plugin in a placeholder. If this plugin would not restrict
its parent plugin classes, we would be allowed to use it as a child of any plugin. This could
destroy the page’s grid.

Furthermore, in the above example we must add the TextLinkPlugin to text_only_plugins.
This is because the TextPlugin is not part of the Cascade ecosystem and hence does not know
which plugins are allowed as its children.

The dictionary named glossary sets the initial parameters of the Bootstrap 3 Grid system.

3.4.5. Define the leaf plugins

Leaf plugins are those, which contain real data, say text or images. Hence the default setting
is to allow the TextPlugin and the FilerImagePlugin as leafs. This can be overridden using
the configuration directive

CMSPLUGIN_CASCADE = {
 ...
 'alien_plugins': ['TextPlugin', 'FilerImagePlugin', 'OtherLeafPlugin'],
 ...
}

3.4.6. Bootstrap 3 with AngularJS

Some Bootstrap3 plugins can be rendered using templates which are suitable for the very popular
Angular UI Bootstrap [http://angular-ui.github.io/bootstrap/] framework. This can be done during runtime; when editing the plugin a
select box appears which allows to chose an alternative template for rendering.

3.5. Template Customization

Make sure that the style sheets are referenced correctly by the used templates. Django-CMS
requires django-sekizai [http://django-sekizai.readthedocs.org/en/latest/] to organize these includes, so a strong recommendation is to use that
Django app.

The templates used for a django-CMS project shall include a header, footer, the menu bar and
optionally a breadcrumb, but should leave out an empty working area. When using HTML5, wrap this
area into an <article> or <section> element or just use it unwrapped.

This placeholder then shall be named using a generic identifier, for instance “Main Content” or
similar:

{% load cms_tags sekizai_tags %}
<head>
 ...
 {% render_block "css" postprocessor "cmsplugin_cascade.sekizai_processors.compress" %}
</head>

<body>
 ...
 <!-- wrapping element (optional) -->
 {% placeholder "Main Content" %}
 <!-- /wrapping element -->
 {% render_block "js" postprocessor "cmsplugin_cascade.sekizai_processors.compress" %}
</body>

From now on, the page layout can be adopted inside this placeholder, without having to fiddle with
template coding anymore.

Note the two templatetags render_block. The upper one collects all the CSS files referenced by
{% addtoblock "css" ... %}. The lower one collects all the JS files referenced by
{% addtoblock "js" ... %}. They then are rendered alltogether instead of beeing distributed all
across the page. If django-compressor [http://django-compressor.readthedocs.org/en/latest/] is installed and enabled, then add the special compressor
"cmsplugin_cascade.sekizai_processors.compress" to the templatetag. It can handle files outside
the ``STATIC_ROOT``directory.

4. Link Plugin

djangocms-cascade ships with its own link plugin. This is because other plugins from the
Cascade eco-system, such as the BootstrapButtonPlugin, the BootstrapImagePlugin or the
BootstrapPicturePlugin also require a functionality in order to set links to internal- and
external URLs. Since we do not want to duplicate the linking functionality for each of those
plugins, it has been moved into its own mixin-classes. Therefore we will use the terminology
TextLinkPlugin when referring to text-based links.

The de-facto plugin for links, djangocms-link [https://github.com/divio/djangocms-link] can’t be used as a base class for these plugins,
hence an alternative implementation has been created within the Cascade framework. The link related
data is stored in a various fields in our main JSON field (named glossary).

4.1. Prerequisites

Before using this plugin, assure that 'cmsplugin_cascade.link' is member of the list or
tuple CMSPLUGIN_CASCADE_PLUGINS in the project’s settings.py.

[image: simple-link-element]

The behavior of this Plugin is what you expect from a Link editor. The field Link Content is the
text displayed between the opening and closing <a> tag. If used in combination with
djangocms-text-ckeditor [https://github.com/divio/djangocms-text-ckeditor] the field automatically is filled out.

By changing the Link type, the user can choose between different types of Links:

	Internal Links pointing to another page inside the CMS.

	External Links pointing to a valid Internet URL.

	Files from django-filer to download.

	Links pointing to a valid e-mail address.

	Optionally any other linkable object, if another Django application extends the Link-Plugin (see
below for details).

The optional field Title can be used to add a title="some value" attribute to the
<a ...> element.

With Link Target, the user can specify, whether the linked content shall open in the current
window or if the browser shall open a new window.

4.2. Link Plugin with Sharable Fields

If your web-site contains many links pointing onto a few external URLs, you might want to refer to
them by a symbolic name, rather than having to reenter the URL repeatedly. With
djangocms-cascade this can be achieved easily by declaring some of the plugin’s fields as
sharable.

Assure that INSTALLED_APPS contains 'cmsplugin_cascade.sharable', then redefine the
TextLinkPlugin to have sharable fields in settings.py:

CMSPLUGIN_CASCADE = {
 ...
 'plugins_with_sharables':
 …
 'TextLinkPlugin': ['link_type', 'ext_url'],
 …
 },
 ...
}

This will change the Link Plugin’s editor slightly. Note the extra field added to the bottom of the
form.

[image: sharable-link-element]

The URL for this link entity now is stored in a central entity. This feature is useful, if for
instance the URL of an external web page may change in the future. Then the administrator can change
that link in the administration area once, rather than having to go through all the pages and check
if that link was used.

To retain the Link settings, click onto the checkbox Remember these settings as: … and give it
a name of your choice. The next time your create a Shared Link element, you may select a previously
named settings from the select field Shared Settings. Since these settings can be shared among
other plugins, these input fields are disabled and can’t be changed anymore.

4.2.1. Changing shared settings

The settings of a shared plugin can be changed globally, for all plugins using them. To edit such a
shared setting, in the Django Admin, go into the list view for
Home › django CMS Cascade › Shared between Plugins and choose the named shared settings.

Please note, that each plugin type can specify which fields shall be sharable between plugins of
the same type. In this example, only the Link itself is shared, but one could configure
djangocms-cascade to also share the link’s title, the target, and other tags.

Then only these fields are editable in the detail view Shared between Plugins. The interface
for other shared plugin may vary substantially, depending of their type definition.

4.3. Extending the Link Plugin

While programming third party modules for Django, one might have to access a model instance through
a URL and thus add the method get_absolute_url [https://docs.djangoproject.com/en/stable/ref/models/instances/#get-absolute-url] to that Django model. Since such a URL is neither a
CMS page, nor a URL to an external web page, it would be convenient to access that model using a
special Link type.

For example, in django-shop [https://github.com/awesto/django-shop] we can allow to link directly to a product, sold by the shop.
This is achieved by reconfiguring the Link Plugin inside Cascade with:

CMSPLUGIN_CASCADE = {
 …
 'link_plugin_classes': (
 'shop.cascade.plugin_base.CatalogLinkPluginBase',
 'shop.cascade.plugin_base.CatalogLinkForm',
),
 …
}

The tuple specified through link_plugin_classes replaces the base class for the LinkPlugin
class and the form class used by its editor.

Here we replace the two built-in classes cmsplugin_cascade.link.plugin_base.DefaultLinkPluginBase
and cmsplugin_cascade.link.forms.LinkForm by alternative implementations.

shop/cascade/plugin_base.py

from entangled.forms import get_related_object
from cmsplugin_cascade.link.plugin_base import LinkPluginBase

class CatalogLinkPluginBase(LinkPluginBase):
 @classmethod
 def get_link(cls, obj):
 link_type = obj.glossary.get('link_type')
 if link_type == 'product':
 relobj = get_related_object(obj.glossary, 'product')
 if relobj:
 return relobj.get_absolute_url()
 else:
 return super().get_link(obj) or link_type

This class handles links of type “Product” and creates a URL pointing onto a Django model implementing
the method get_absolute_url.

Additionally, we have to override the form class used by the Link plugin editor:

shop/cascade/plugin_base.py

from cms.plugin_pool import plugin_pool
from django.forms import models
from shop.models.product import ProductModel

class CatalogLinkForm(LinkForm):
 LINK_TYPE_CHOICES = [
 ('cmspage', _("CMS Page")),
 ('product', _("Product")),
 ('download', _("Download File")),
 ('exturl', _("External URL")),
 ('email', _("Mail To")),
]

 product = models.ModelChoiceField(
 label=_("Product"),
 queryset=ProductModel.objects.all(),
 required=False,
 help_text=_("An internal link onto a product from the catalog"),
)

 class Meta:
 entangled_fields = {'glossary': ['product']}

Now the select box for Link type will offer one additional option named “Product”. When this is
selected, the page administrator can select one product in the shop and the link will point onto
its proper detail page.

4.4. Using Links in your own Plugins

Many HTML components allow to link onto other resources, for instance images, the button element,
icons, etc. Since we don’t want the reimplement the linking functionality for each of them,
djangocms-cascade offers a few base classes, which can be used by those plugin. As an example,
let’s implement a simple button plugin.

myproject/cascade/button.py

from django.forms import models
from cms.plugin_pool import plugin_pool
from cmsplugin_cascade.link.config import LinkPluginBase, LinkFormMixin
from cmsplugin_cascade.link.plugin_base import LinkElementMixin

class ButtonForm(LinkFormMixin):
 require_link = False

 button_content = models.CharField(
 label=_("Button Content"),
)

 class Meta:
 entangled_fields = {'glossary': ['link_content']}

class ButtonPlugin(LinkPluginBase):
 name = _("Button")
 model_mixins = (LinkElementMixin,)
 form = ButtonForm
 render_template = 'myproject/button.html'
 allow_children = False

plugin_pool.register_plugin(ButtonPlugin)

What we see here is, that our ButtonForm, which is used by our ButtonPlugin inherits from
a base form offering all the fields required to link somewhere. Sine the button may just display
some content, but without linking anywhere, we make that optional by setting require_link to
False. The box for selecting the “Link Type” then adds “No Link” to its set of options.

We don’t even have to bother, whether our custom button can point onto links types specified by yet
another third party app, and not handled by djangocms-cascade – All these additional link types
are handled automatically by the configuration setting CMSPLUGIN_CASCADE['link_plugin_classes']
as explained in the previous section.

5. Plugins for Bootstrap-3

This is a collection of plugins to be used with the Bootstrap-3 CSS framework:

	5.1. Gallery

	5.2. Bootstrap 3 Grid system

	5.3. HTML5 <picture> and the new elements

	5.4. Template tag for the Bootstrap3 Navbar

	5.5. Panel element

	5.6. Jumbotron

	5.7. Tab Sets

	5.8. Secondary menu

5.1. Gallery

A gallery is a collection of images displayed as a group. Since it normally consists of many similar
images, djangocms-cascade does not require to use child plugins for each image. Instead they
can be added directly to the Bootstrap Gallery Plugin. Here, djangocms-cascade uses a
special model, named cmsplugin_cascade.models.InlineCascadeElement which also uses a JSON
field to store it’s payload. It thus can be configured to accept any kind of data, just as it’s
counterpart cmsplugin_cascade.models.CascadeElement does.

Since plugin editors are based on Django’s admin backend, the Gallery Plugin uses the Stacked Inline
formset to manage it’s children. If django-admin-sortable2 is installed, the entries in the
plugin can even be sorted using drag and drop.

5.2. Bootstrap 3 Grid system

In order to take full advantage of djangocms-cascade, you should be familiar with the
concepts of the Bootstrap Grid System [http://getbootstrap.com/css/#grid], since all other Bootstrap components depend upon.

5.2.1. Bootstrap Container

A Container is the outermost component the Bootstrap framework knows of. Here the designer can
specify the breakpoints of a web page. By default, Bootstrap offers 4 breakpoints: “large”,
“medium”, “small” and “tiny”. These determine for which kind of screen widths, the grid system may
switch the layout.

The editor window for a Container element offers the possibility to deactivate certain breakpoints.
While this might make sense under certain conditions, it is safe to always keep all four breakpoints
active, since this gives the designer of the web page the maximum flexibility.

[image: edit-container]

5.2.1.1. Small devices exclusively

If the web page shall be optimized just for small but not for large devices, then disable the
breakpoints for Large and/or Medium. In the project’s style-sheets, the maximum width
of the container element then must be reduced to that chosen breakpoint:

@media(min-width: 1200px) {
 .container {
 max-width: 970px;
 }
}

or, if you prefers the SASS syntax:

@media(min-width: $screen-lg) {
 .container {
 max-width: $container-desktop;
 }
}

5.2.1.2. Large devices exclusively

If the web page shall be optimized just for large but not for small devices, then disable the
breakpoints for Tiny and/or Small.

Changing the style-sheets then is not required for this configuration setting.

5.2.1.3. Fluid Container

A variant of the normal Bootstrap Container is the Fluid Container. It can be enabled by a checkbox
in the editors window. Fluid Containers have no hards breakpoints, they adopt their width to
whatever the browser pretends and are slightly larger than their non-fluid counterpart.

A fluid container makes it impossible to determine the maximum width of responsive images for the
large media breakpoint, because it is applied whenever the browser width extends 1200 pixels,
but there is no upper limit. For responsive images in the smaller breakpoints (“tiny”, “small”
and “medium”) we use the width of the next larger breakpoint, but for images in the “large” media
breakpoints we somehow must specify an arbitrary maximum width. The default width is set to 1980
pixels, but can be changed, to say 2500 pixels, using the following configuration in your
settings.py:

CMSPLUGIN_CASCADE = {
 ...
 'bootstrap3': (
 ('xs', (768, 'mobile', _("mobile phones"), 750, 768)),
 ('sm', (768, 'tablet', _("tablets"), 750, 992)),
 ('md', (992, 'laptop', _("laptops"), 970, 1200)),
 ('lg', (1200, 'desktop', _("large desktops"), 1170, 2500)),
),
}

Note

Fluid container are specially useful for Hero images, full-width Carousels and the
Jumbotron plugin. When required, add a free standing fluid container to the placeholder and as
it’s only child, use the picture or carousel plugin. Its content then is stretched to the
browser’s full width.

5.2.2. Bootstrap Row

Each Bootstrap Container may contain one or more Bootstrap Rows. A row does not accept any
configuration setting. However, while editing, one can specify the number of columns. When adding or
changing a row, then this number of columns are added if its value exceeds the current number of
columns. Reducing the number of columns does not delete any of them; they must explicitly be chosen
from the context menu in structure view.

[image: edit-row]

5.2.3. Horizontal Rule

A horizontal rule is used to separate rows optically from each other.

[image: rule-editor]

5.2.4. Column

In the column editor, one can specify the width, the offset and the visibility of each column.
These values can be set for each of the four breakpoints (tiny, small, medium and large),
as specified by the Container plugin.

At the beginning this may feel rather complicate, but consider that Bootstrap 3 is mobile first,
therefore all column settings, first are applied to the narrow breakpoints, which later can be
overridden for larger breakpoints at a later stage. This is the reason why this editor starts with
the column widths and column offsets for tiny rather than for large displays.

[image: edit-column]

Note

If the current column is member of a container which disables some of its breakpoints
(large, medium, small or tiny), then that column editor shows up only with the
input fields for the enabled breakpoints.

5.2.5. Complete DOM Structure

After having added a container with different rows and columns, you may add the leaf plugins. These
hold the actual content, such as text and images.

[image: structure-container]

By pressing the button Publish changes, the single blocks are regrouped and displayed using
the Bootstrap’s grid system.

5.2.6. Adding Plugins into a hard coded grid

Sometimes the given Django template already defines a Bootstrap Container, or Row inside a Container
element. Example:

<div class="container">
 {% placeholder "Row Content" %}
</div>

or

<div class="container">
 <div class="row">
 {% placeholder "Column Content" %}
 </div>
</div>

Here the Django templatetag {% placeholder "Row Content" %} requires a Row- rather than a
Container-plugin; and the templatetag {% placeholder "Column Content" %} requires a
Column-plugin. Hence we must tell djangocms-cascade which breakpoints shall be allowed and what
the containers extensions shall be. This must be hard-coded inside your setting.py:

CMS_PLACEHOLDER_CONF = {
 # for a row-like placeholder configuration ...
 'Row Content': {
 'plugins': ['BootstrapRowPlugin'],
 'parent_classes': {'BootstrapRowPlugin': []},
 'require_parent': False,
 'glossary': {
 'breakpoints': ['xs', 'sm', 'md', 'lg'],
 'container_max_widths': {'xs': 750, 'sm': 750, 'md': 970, 'lg': 1170},
 'fluid': False,
 'media_queries': {
 'xs': ['(max-width: 768px)'],
 'sm': ['(min-width: 768px)', '(max-width: 992px)'],
 'md': ['(min-width: 992px)', '(max-width: 1200px)'],
 'lg': ['(min-width: 1200px)'],
 },
 }
 },
 # or, for a column-like placeholder configuration ...
 'Colummn Content': {
 'plugins': ['BootstrapColumnPlugin'],
 'parent_classes': {'BootstrapColumnPlugin': []},
 'require_parent': False,
 'glossary': {
 'breakpoints': ['xs', 'sm', 'md', 'lg'],
 'container_max_widths': {'xs': 750, 'sm': 750, 'md': 970, 'lg': 1170},
 'fluid': False,
 'media_queries': {
 'xs': ['(max-width: 768px)'],
 'sm': ['(min-width: 768px)', '(max-width: 992px)'],
 'md': ['(min-width: 992px)', '(max-width: 1200px)'],
 'lg': ['(min-width: 1200px)'],
 },
 }
 },
}

Please refer to the DjangoCMS documentation [https://django-cms.readthedocs.org/en/latest/basic_reference/configuration.html#std:setting-CMS_PLACEHOLDER_CONF] for details about these settings with the exception
of the dictionary glossary. This latter setting is special to djangocms-cascade: It gives
the placeholder the ability to behave like a plugin for the Cascade app. Remember, each
djangocms-cascade plugin stores all of its settings inside a Python dictionary which is
serialized into a single database field. By having a placeholder behaving like a plugin, here this
so named glossary is emulated using an additional entry inside the setting
CMS_PLACEHOLDER_CONF, and it should:

	include all the settings a child plugin would expect from a real container plugin

	reflect how hard coded container was defined (e.g. whether it is fluid or not)

5.2.7. Nested Columns and Rows

One of the great features of Bootstrap is the ability to nest Rows inside Columns. These nested Rows
then can contain Columns of 2nd level order. A quick example:

<div class="container">
 <div class="row">
 <div class="col-md-3">
 Left column
 </div>
 <div class="col-md-9">
 <div class="row">
 <div class="col-md-6">
 Left nested column
 </div>
 <div class="col-md-6">
 Right nested column
 </div>
 </div>
 </div>
 </div>
</div>

rendered, it would look like:

[image: nested-rows]

If a responsive image shall be placed inside a column, we must estimate the width of this image, so
that when rendered, it fits exactly into that column. We want easy-thumbnails [https://github.com/SmileyChris/easy-thumbnails] to resize our images
to the columns width and not having the browser to up- or down-scale them.

Therefore djangocms-cascade keeps track of all the breakpoints and the chosen column widths.
For simplicity, this example only uses the breakpoint “medium”. The default Boostrap settings for
this width is 992 pixels. Doing simple math, the outer left column widths gives
3 / 12 * 992 = 248 pixels. Hence, adding a responsive image to that column means, that
easy-thumnails automatically resizes it to a width of 248 pixels.

To calculate the width of the nested columns, first evaluate the width of the outer right column,
which is 9 / 12 * 992 = 744 pixels. Then this width is subdivided again, using the width of the
nested columns, which is 6 / 12 * 744 = 372 pixels.

These calculations are always performed recursively for all nested column and for all available
breakpoints.

Warning

As the name implies, a container marked as fluid, does not specify a fixed width.
Hence instead of the inner width, the container’s outer width is used as its maximum. For the
large media query (with a browser width of 1200 pixels or more), the maximum width is limited
to 1980 pixels.

5.3. HTML5 <picture> and the new elements

Bootstrap’s responsive grid system, helps developers to adapt their site layout to a wide range of
devices, from smart-phones to large displays. This works fine as long as the content can adopt to
the different widths. Adding the CSS class img-responsive to an tag, resizes
that image to fit into the surrounding column. However, since images are delivered by the server
in one specific size, they either are too small and must be upscaled, resulting in an grainy image,
or are too big, resulting in a waste of bandwidth and slowing down the user experience, when surfing
over slow networks.

5.3.1. Adaptive resizing the images

An obvious idea would be to let the server decide, which image resolution fits best to the browsing
device. This however is bad practice. Images typically are served upon a GET-request pointing onto
a specific URL. GET-requests shall be idempotent and thus are predestined to be cached by proxies
on the way to the client. Therefore it is a very bad idea to let the client transmit its screen
width via a cookie, and deliver different images depending on this value.

Since the sever side approach doesn’t work, it is the browsers responsibility to select the
appropriate image size. An ideal adaptive image strategy should do the following:

	Images should fit the screen, regardless of their size. An adaptive strategy needs to resize the
image, so that it can resize into the current column width.

	Downloading images shall minimize the required bandwidth. Large images are enjoying greater
popularity with the advent of Retina displays, but those devices normally are connected to the
Internet using DSL rather than mobiles, which run on 3G.

	Not all images look good when squeezed onto a small display, particularly images with a lot of
detail. When displaying an image on a mobile device, you might want to crop only the interesting
part of it.

As these criteria can’t be fulfilled using the well known element,
djangocms-cascade offers two responsive variants recently added to the HTML5 standard:

One is the tag, but with the additional attributes sizes and srcset. This element
can be used as a direct replacement for .

The other is a new element named <picture>. Use this element, if the image’s shape or details
shall adopt their shape and/or details to the displaying media device. The correct terminology for
this kind of behavior is art direction [http://usecases.responsiveimages.org/#art-direction].

[image: art-direction]

But in the majority of use cases, the Bootstrap Image Plugin will work for you. Use the
Bootstrap Picture Plugin only in those few cases, where in addition to the image width,
you also want to change the aspect ratio and/or zoom factor, depending on the display’s sizes.

Using these new elements, the browser always fetches the image which best fits the current layout.
Additionally, if the browser runs on a high resolution (Retina) display, an image with double
resolution is downloaded. This results in much sharper images.

5.3.1.1. Browser support

Since Chrome 38, the element fully supports srcset and sizes [http://ericportis.com/posts/2014/srcset-sizes/]. It also supports
the <picture> element right out of the box. Here is a list of native browser support for the
picture [http://caniuse.com/#feat=picture] and the image element with attribute srcset [http://caniuse.com/#feat=srcset].

For legacy browsers, there is a JavaScript library named picturefill.js [http://scottjehl.github.io/picturefill/], which emulates the built
in behavior of these new features. But even without that library, djangocms-cascade renders
these HTML elements in a way to fall back on a sensible default image.

5.3.2. Image Plugin Reference

In edit mode, double clicking on an image, opens the Image Plugin editor. This editor offers the
following fields in order to adapt an image to the current layout.

[image: edit-image]

5.3.2.1. Image

Clicking on the magnifying glass opens a pop-up window from django-filer [https://github.com/stefanfoulis/django-filer] where you can choose the
appropriate image.

5.3.2.2. Image Title

This optional field shall be used to set the tag inside this HTML
element.

5.3.2.3. Alternative Description

This field shall be used to set the alt tag inside the <picture> or
element. While the editor does require this field to be filled, it is strongly recommended to add
some basic information about that picture.

5.3.2.4. Link type

Using this select box, one can choose to add an internal, or external link to the image. Please
check the appropriate section for details.

5.3.2.5. Image Shapes

These checkboxes control the four CSS classes from the Bootstrap3 framework: img-responsive,
img-rounded, img-circle and img-thumbnail. While rendering HTML, they will be added to
the element.

Here the option Responsive has a special meaning. The problem with responsive images is, that
their size depends on the media width of the device displaying the image. Therefore we can not use
the well known element with a fixed width=".." and height="..". Instead,
when rendering responsive images, the additional attributes srcset and sizes are added to
the element. The attribute srcset contains the URLs, of up to four differently scaled images.
The width of these images is determined by the maximum width of the wrapping container <div>,
normally a Bootstrap column.

5.3.2.6. Responsive Image Width

This field is only available for responsive images. If set to 100% (the default), the image will
spawn the whole column width. By setting this to a smaller value, one may group more than one image
side by side into one column.

5.3.2.7. Fixed Image Width

This field is only available for non-responsive images. Here an image size must be specified in
pixels. The image then will be rendered with a fixed width, independently of the current screen
width. Images rendered with a fixed width do not neither contain the attributes srcset nor
sizes.

5.3.2.8. Adapt Image Height

Leaving this empty (the default), keeps the natural aspect ratio of an image. By setting this to a
percentage value, the image’s height is resized to its current used width, hence setting this to
100% reshapes the image into a square. Note that this normally requires to crop the image,
see Resize Options below. Setting this value in pixels, set the image to a fixed height.

5.3.2.9. Resize Options

	Upscale image: If the original image is smaller than the desired drawing area, then the image
is upscaled. This in general leads to blurry images and should be avoided.

	Crop image: If the aspect ratio of the image and the desired drawing area do not correlate,
than the image is cropped to fit, rather than leaving white space arround it.

	With subject location: When cropping, use the red circle to locate the most important part of
the image. This is a feature of Django’s Filer.

	Optimized for Retina: Currently only available for images marked as responsive, this option
adds an images variant suitable for Retina displays.

5.3.3. Picture Plugin Reference

A picture is another wording for image. It offers some rarely required options when working with
images using art direction [http://usecases.responsiveimages.org/#art-direction]. By double-clicking onto a picture, its editor pops up.

[image: edit-picture]

The field Image, Image Title, Alternative Description, Link type and Resize
Options behave exactly the same as for the Image Plugin.

Beware that Pictures always are considered as responsive, and they always spawn to the whole width
of the wrapping element, using the CSS style width: 100%. They make the most sense for large
images extending over a large area. Therefore it is not possible to specify a width for a picture.

5.3.3.1. Adapt Picture Heights

Depending on the current screen’s width, one may set different heights for an image. This is useful
in order to adopt the aspect ratio of an image, when switching from desktops to mobile devices.
Normally, one should use a fixed height in pixels here, but when specifying the heights in percent,
these heights are considered relative to the current image height.

5.3.3.2. Adapt Picture Zoom

Depending on the current screen’s width, one may set different zoom levels for an image. This is
useful for keeping the level of detail constant, at the cost of cropping more of the image’s
margins.

5.4. Template tag for the Bootstrap3 Navbar

Warning

This template tag is now deprecated. It’s functionality has been
split off into a new project that can be found here:
Django CMS Bootstrap 3 [https://github.com/jrief/djangocms-bootstrap3].

Although it’s not derived from the CascadeElement class, this Django app is shipped with a
template tag to render the main menu inside a Bootstrap Navbar [http://getbootstrap.com/components/#navbar]. This tag is named main_menu
and shall be used instead of show_menu, as shipped with the DjangoCMS menu app.

Render a Navbar according to the Bootstrap3 guide:

{% load bootstrap3_tags %}
...
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-collapse">
 Toggle navigation

 </button>
 Project name
 </div>
 <div class="collapse navbar-collapse">
 <ul class="nav navbar-nav">{% main_menu %}
 </div>
 </div>
</div>

Assume, the page hierarchy in DjangoCMS is set up like this:

[image: page-hierarchy]

then in the front-end, the navigation bar will be rendered as

[image: navbar]

on computer displays, and as

[image: navbar-mobile]

on mobile devices.

Note

Bootstrap3 does not support “hover”, since this event can’t be handled by touch screens.
Therefore the client has to click on the menu item, rather than moving the mouse cursor
over it. In order to make CMS pages with children selectable, those menu items are
duplicated. For instance, clicking on Dropdown in the Navbar, just opens the pull-down
menu. Here the menu item for the page named “Dropdown” is rendered again. Clicking on this
item, finally loads that page from the CMS.

Note

Bootstrap3 does not support nested menus, because they wouldn’t be usable on mobile
devices. Therefore the template tag main_menu renders only one level of children, no
matter how deep the page hierarchy is in DjangoCMS.

5.5. Panel element

Bootstrap is shipped with CSS helpers to facilitate the creation of Panels [http://getbootstrap.com/components/#panels]. In djangocms-cascade
these panels can be added to any placholder. In the context menu of a placeholder, select Panel
below the section Bootstrap and chose the style. The panel heading and footer are optional.
As body, the panel element accepts other plugins, normally this is a Text plugin.

5.6. Jumbotron

Bootstrap is shipped with CSS helpers to facilitate the creation of a Jumbotron [http://getbootstrap.com/components/#jumbotron], sometimes also
named “Hero” element. In djangocms-cascade, such a Jumbotron plugin can be added anywhere,
even as the root element of a placeholder, in other words, even outside of a Bootstrap Container
plugin. The latter configuration is specially useful for images, which shall extend over the full
width of the web page.

If used outside a Bootstrap Container, we first must configure the allowed breakpoints. This is
the same behaviour as for the Container plugin. Then we optionally can chose an image or a
background color, it’s size, attachment, position and repetitions. For more details read
this article [https://css-tricks.com/almanac/properties/b/background-image/] on how to configure background images using pure CSS.

A Jumbotron without any content has a default height of 96 pixels, which is 48 pixels for the
top- and bottom paddings, each. These values are given by the Bootstrap 3 framework.

To increase the height of a Jumbotron you have two choices. The simpler one is to add some
content to the Jumbotron plugin which then increases it’s height. Another, is to explicitly
to set other padding of the Jumbotron plugin.

5.7. Tab Sets

Bootstrap is shipped with CSS helpers to facilitate the creation of Tabs [http://getbootstrap.com/javascript/#tabs]. In djangocms-cascade,
such a Tab plugin can be added anywhere inside columns or rows.

In the context menu of a placeholder, select Tab Set. Depending on the chosen number of
children, it will add as many Tab Pane**s. Each **Tab Pane has a Title field, its content is
displayed in the tab. Below a Tab Pane you are free to add whatever you want.

5.8. Secondary menu

Warning

This plugin is experimental. It may disappear or be replaced. Use it at your own risk!

Often there is a need to add secondary menus at arbitrary locations. The Secondary menu plugin
can be used in any placeholder to display links onto child pages of a CMS page. Currently only
pages marked as Soft Root with a defined Page Id are allowed as parent of such a secondary
menu.

Note

This plugins reqires the template tag main_menu_below_id which is shipped with
djangocms-bootstrap3 [https://github.com/jrief/djangocms-bootstrap3]

6. Using Fonts with Icons

6.1. Introduction

Sometimes we want to enrich our web pages with vectorized symbols. A lot of them can be found in
various font libraries, such as Font Awesome [http://fontawesome.io/], Material Icons [https://design.google.com/icons/], Streamline Icons [https://streamlineicons.com/] and many
more. A typical approach would be to upload the chosen SVG symbol, and use it as image. This
process however is time consuming and error-prone to organize. Therefore, djangocms-cascade
offers an optional submodule, so that we can work with externally packed icon fonts.

In order to use such a font, currently we must use Fontello [http://fontello.com/], an external service for icon font
packaging. In the future, this service might be integrated into djangocms-cascade itself.

This submodule, if enabled adds three additional plugins: Icon with frame, Simple icon and
Icon in text. Additionally it allows to decorate buttons with an icon on the left or right side
of its main content.

6.1.1. Configuration

To enable this service in djangocms-cascade, in settings.py add:

INSTALLED_APPS = [
 …
 'cmsplugin_cascade',
 'cmsplugin_cascade.icon',
 …
]

CMSPLUGIN_CASCADE_PLUGINS = [
 …
 'cmsplugin_cascade.icon',
 …
]

This submodule, can of course be combined with all other submodules available for the Cascade
ecosystem.

If CMS_PLACEHOLDER_CONF is used to configure available plugins for each placeholder, assure
that the TextIconPlugin is added to the list of text_only_plugins.

Since the CKEditor widget must load the font stylesheets for it’s own WYSIWIG mode, we have to add
this special setting to our configuration:

from django.core.urlresolvers import reverse_lazy
from django.utils.text import format_lazy

CKEDITOR_SETTINGS = {
 …
 'stylesSet': format_lazy(reverse_lazy('admin:cascade_texteditor_config')),
}

6.2. Uploading the Font

In order to start with an external font icon, choose one or more icons and/or whole font families
from the Fontello [http://fontello.com/] website and download the generated webfont zip-file to a local folder on your
computer.

In Django’s admin backend, change into Start › django CMS Cascade › Uploaded Icon Fonts and
add an Icon Font object. Choose an appropriate name and upload the just downloaded webfont file,
without unzipping it. After the upload completed, all the imported icons appear grouped by their
font family name. They now are ready for being used by the Icon plugin.

Attention

The icon fonts generated by Fontello [http://fontello.com/], offer a generated ….css file containing a mapping of
private UTF-8 characters onto their font symbol. This means that the genarated font files may
have an overlapping encoding. Therefore each uploaded font requires a unique CSS prefix,
otherwise it wouldn’t be possible to use more than one icon font per page. This prefix must be
set under Fontello’s settings, located left of the Download webfont button.

Attempting to upload an icon fonts with a CSS prefix, which is already used, will be rejected.

Warning

Depending on your settings, Safari auto-unzips that file and hence makes it unusable for
re-upload. Either change your settings in Safari (Preferences > General > Open “safe” files),
or use another browser.

Note

During the 0.17-series of djangocms-cascade, an icon font had to be selected per page,
rather than per element. This feature turned out to be impractical and has been reverted to
the pre-0.17 behaviour.

6.3. Using the Icon Plugin

In djangocms-cascade, currently four plugins make use of the icon font sublibrary. These
are the Simple Icon, the Icon with frame, the Button and the Icon in Text plugin.
The latter is available only as subplugin of the Text Editor plugin.

In their respective editors, the user may select one of the uploaded icon fonts. Each time one
of them is selected, the table of symbols is rerendered. Use the search field on the top of the
table to restrict the list of icons, in case there are too many.

Choose the desired symbol, its size and color. Optionally choose a background color, a border with
width, color and style, and the relative position in respect of its wrapping element. After saving
the form, that element should appear inside the chosen container.

6.3.1. Shared Settings

By default, the IconPlugin is configured to allow to share the following styling attributes:

	Icon size

	Icon color

	Background color, or without background

	Text alignment

	Border width, color and style

	Border radius

By storing these attributes under a common name, one can reuse them across various icons, without
having to set them for each one, separately. Additionally, each of the shared styling attributes
can be changed globally in Django’s admin backend at
Start › django CMS Cascade › Shared between Plugins. For details please refer to the section
about Working with sharable fields.

6.4. Using the Icon Plugin in plain text

If django-CMS is configured to use the CKEditor for django-CMS [https://pypi.org/project/djangocms-text-ckeditor/], then you may use the
Icon Plugin inside plain text. Place the cursor at the desired location in text and select
Icon from the pull down menu CMS Plugins. This opens a popup where you may select the
font family and the symbol. All other attributes described above, are not available with this
type of plugin.

7. Map Plugin using the Leaflet frontend

If you want to add a interactive maps to a Django-CMS placeholder, the Cascade Leaflet Map
Plugin may be your best choice. It is not activated by default, because it requires a special
JavaScript library, an active Internet connection (in order to load the map tiles), and a license
key (this depends on the chosen tiles layer). By default the Cascade Leaflet Map Plugin uses
the Open Street Map [http://www.openstreetmap.org/] tile layer, but this can be changed to Mapbox [https://www.mapbox.com/], Google Maps [https://developers.google.com/maps/] or another
provider.

This plugin uses third party packages, based on the Leaflet JavaScript [http://leafletjs.com/] library for mobile-friendly
interactive maps.

7.1. Installation

The required JavaScript dependencies are not shipped with djangocms-cascade. They must be
installed separately from the Node JS repository [https://www.npmjs.com/].

npm install leaflet
npm install leaflet-easybutton

Note

Leaflet Easybutton is only required for the administration backend.

7.2. Configuration

The default Cascade settings must be active in order to use the Leaflet Map Plugin. Additionally
add to the project’s settings:

CMSPLUGIN_CASCADE_PLUGINS = [
 ...
 'cmsplugin_cascade.leaflet',
 ...
]

By modifying the dictionary CMSPLUGIN_CASCADE['leaflet'] you may override Leaflet specific
settings. Change CMSPLUGIN_CASCADE['leaflet']['tilesURL'] to the titles layer [http://leafletjs.com/reference-1.0.3.html#tilelayer] of your choice.

All other attributes of that dictionary are passed as options to the Leaflet tileLayer
constructor. For details, please refer to the Leaflet specific documentation.

7.3. Usage

Add a Map Plugin to any django-CMS placeholder. Here you may adjust the width and height of
the map.

The map can be repositioned at any time. Use the Center button on the top left corner to reset the
position to the coordinates and zoom level, it was saved the last time.

7.3.1. Adding a marker to the map

First click on Add another Marker and enter a title of your choice. Afterwards go to the map and
place the marker. After saving the map, this new marker will be persisted.

Additionally, one may choose a customized marker icon: Click on Use customized marker icon and
choose an image from your media files. It is recommended to use PNG images with a transparent layer
as marker icons.

Adjust the icon’s size by setting the marker width. The height is computed in order to keep the same
aspect ratio.

Note

Customized marker icons are only displayed in the frontend. The backend always uses the
default pin symbol.

By settings the marker’s anchor, the icon can be positioned exactly.

Markers can be repositioned at any time and the new coordinates are saved together with the map.

7.4. Alternative Tiles

By default, djangocms-cascade is shipped using tiles from the Open Street Map [http://www.openstreetmap.org/] project.
This is mainly because these tiles can be used without requiring a license key. However, they load
slowly and their appearance might not be what your customers expect.

7.4.1. Mapbox

A good alternative are tiles from Mapbox [https://www.mapbox.com/]. Please refer to their terms and conditions for details.
There you can also apply for an access token, they offer free plans for low traffic sites.

Then add to the project’s settings.py:

CMSPLUGIN_CASCADE = {
 ...
 'leaflet': {
 'tilesURL': 'https://api.tiles.mapbox.com/v4/{id}/{z}/{x}/{y}.png?access_token={accessToken}',
 'accessToken': YOUR-MAPBOX-ACCESS-TOKEN,
 ...
 }
 ...
}

7.4.2. Google Maps

The problem with Google is that its Terms of Use forbid any means of tile access other than through
the Google Maps API. Therefore in the frontend, Google Maps are rendered using a different template,
which is not based on the LeafletJS library. This means that you must edit your maps using Mapbox or
OpenStreetMap titles, whereas Google Maps is only rendered in the frontend.

To start with, apply for a Google Maps API key [https://developers.google.com/maps/documentation/javascript/get-api-key] and add it to the project’s settings.py:

CMSPLUGIN_CASCADE = {
 ...
 'leaflet': {
 ...
 'apiKey': YOUR-GOOGLE-MAPS-API-KEY,
 ...
 }
 ...
}

When editing a Map plugin, choose Google Map from the select field named Render template.

If want to render Google Maps exclusively in the frontend, change this in your project’s
settings.py:

CMSPLUGIN_CASCADE = {
 ...
 'plugins_with_extra_render_templates': {
 'LeafletPlugin': [
 ('cascade/plugins/googlemap.html', "Google Map"),
],
 }
 ...
}

7.5. Default Starting Position

Depending of the region you normally create maps, you can specify the default starting position. If for instance
your main area of interest is Germany, than these coordinates are a good setting:

CMSPLUGIN_CASCADE = {
 ...
 'leaflet': {
 'default_position': {'lat': 50.0, 'lng': 12.0, 'zoom': 6},
 }
 ...
}

8. Handling the client side

DjangoCMS-Cascade is shipped with a lot of plugins, all having their own inheritance hierarchy.
Due to the flexibility of Cascade, this inheritance hierarchy can be extended though some
configuration settings, while bootstrapping the runtime environment. Some plugins for instance, can
be configured to store some settings in a common data store. This in the admin backend requires a
special Javascript plugin, from which the client side must inherit as well.

Hence on the client side, we would like to describe the same inheritance hierarchy using Javascript.
Therefore Cascade is equipped with a small, but very powerful library named ring.js [http://ringjs.neoname.eu/]. It makes
Javascript behave almost like Python. If a Cascade plugin provides a Javascript counterpart,
then other Cascade plugins inheriting from the former one, map their inheritance hierarchy in
Javascript exactly as provided by the plugins written in Python.

8.1. Implementing the client

Say, we want to add some client side code to a Cascade plugin. We first must import that Javascript
file through Django’s static asset definitions [https://docs.djangoproject.com/en/stable/topics/forms/media/] using the Media class, or if you prefer in a
dynamic property method media().

At some point during the initialization, Cascade must call the constructor of the Javascript
plugin we just added. Therefore Cascade plugins provide an extra attribute named ring_plugin,
which is required to name the Javascript’s counterpart of our Python class. You can use any name
you want, but it is good practice to use the same name as the plugin.

The Python class of our custom Cascade plugin then might look like:

from cmsplugin_cascade.plugin_base import CascadePluginBase

class MyCustomPlugin(CascadePluginBase):
 name = "Custom Plugin"
 ... other class attributes
 ring_plugin = 'MyCustomPlugin'

 class Media:
 js = ['mycustomproject/js/admin/mycustomplugin.js']

whereas it’s Javascript counterpart might look like:

mycustomproject/js/admin/mycustomplugin.js

django.jQuery(function($) {
 'use strict';

 django.cascade.MyCustomPlugin = ring.create({
 constructor: function() {
 // initialization code
 },
 custom_func: function() {
 // custom functionality
 }
 });
});

After yours, and all other Cascade plugins have been initialized in the browser, the Cascade
framework invokes new django.cascade.MyCustomPlugin(); to call the constructor function.

8.2. Plugin Inheritance

If for instance, our MyCustomPlugin requires functionality to set a link, then instead of
replication the code required to handle the link input fields, we can rewrite our plugin as:

from cmsplugin_cascade.link.config import LinkPluginBase

class MyCustomPlugin(LinkPluginBase):
 ... class attributes as in the previous example

Since LinkPluginBase provides it’s own ring_plugin attribute, the corresponding Javascript
code also must inherit from that base class. Cascade handles this for you automatically, if the
Javascript code of the plugin is structured as:

mycustomproject/js/admin/mycustomplugin.js

django.jQuery(function($) {
 'use strict';

 var plugin_bases = eval(django.cascade.ring_plugin_bases.MyCustomPlugin);

 django.cascade.MyCustomPlugin = ring.create(plugin_bases, {
 constructor: function() {
 this.$super();
 // initialization code
 },
 ...
 });
});

The important parts here is the call to eval(django.cascade.ring_plugin_bases.MyCustomPlugin),
which resolves the Javascript functions our custom plugin inherits from.

Note

In case you forgot to add a missing JavaScript requirement, then ring.js complains with
the error message Uncaught TypeError: Cannot read property '__classId__' of undefined.
If you run into this problem, recheck that all Javascript files have been loaded and
initialized in the correct order.

9. Section Bookmarks

If you have a long page, and you want to allow the visitors of your site to quickly navigate to
different sections, then you can use bookmarks and create links to the different sections of any
HTML page.

When a user clicks on a bookmark link, then that page will load as usual but will scroll down
immediately, so that the bookmark is at the very top of the page. Bookmarks are also known as
anchors. They can be added to any HTML element using the attribute id. For example:

<section id="unique-identifier-for-that-page">

For obvious reasons, this identifier must be unambiguous, otherwise the browser does not know
where to jump to. Therefore djangocms-cascade enforces the uniqueness of all bookmarks used on
each CMS page.

9.1. Configuration

The HTML standard allows the usage of the id attribute on any element, but in practice it only
makes sense on <section>, <article> and the heading elements <h1>…``<h6>``.
Cascade by default is configured to allow bookmarks on the SimpleWrapperPlugin and the
HeadingPlugin. This can be overridden in the project’s configuration settings using:

CMSPLUGIN_CASCADE = {
 ...
 'plugins_with_bookmark': [list-of-plugins],
 ...
}

9.1.1. Hashbang Mode

Links onto bookmarks do not work properly in hashbang mode. Depending on the HTML settings, you may
have to prefix them with / or !. Therefore djangocms-cascade offers a configuration
directive:

CMSPLUGIN_CASCADE = {
 ...
 'bookmark_prefix': '/',
 ...
}

which automatically prefixes the used bookmark.

9.2. Usage

When editing a plugin that is eligible for adding a bookmark, an extra input field is shown:

[image: section-bookmark]

You may add any identifier to this field, as long as it is unique on that page. Otherwise the
plugin’s editor will be reject the given inputs, while saving.

9.3. Hyperlinking to a Bookmark

When editing a TextLink, BootstrapButton or the link fields inside the Image or
Picture plugins, the user gets an additional drop-down menu to choose one of the bookmarks for
the given page. This additional drop-down is only available if the Link is of type CMS page.

[image: link-bookmark]

If no bookmarks have been associated with the chosen CMS page, the drop-down menu displays only
Page root, which is the default.

10. Segmentation of the DOM

The SegmentationPlugin allows to personalize the DOM structure, depending on the context used to
render the corresponding page. Since djangoCMS always uses a RequestContext [https://docs.djangoproject.com/en/1.8/ref/templates/api/#django.template.RequestContext] while rendering its
pages, we always have access onto the request object. Some use cases are:

	Depending on the user, show a different portion of the DOM, if he is a certain user or not logged
in at all.

	Show different parts of the DOM, depending on the browsers estimated geolocation. Useful to
render different content depending on the visitors country.

	Show different parts of the DOM, depending on the supplied marketing channel.

	Show different parts of the DOM, depending on the content in the session objects from previous
visits of the users.

	Segment visitors into different groups used for A/B-testing.

10.1. Configuration

The SegmentationPlugin must be activated separately on top of other djangocms-cascade
plugins. In settings.py, add to

INSTALLED_APPS = (
 ...
 'cmsplugin_cascade',
 'cmsplugin_cascade.segmentation',
 ...
)

Then, depending on what kind of data shall be emulated, add a list of two-tuples to the
configuration settings CMSPLUGIN_CASCADE['segmentation_mixins']. The first entry of each
two-tuple specifies the mixin class added the the proxy model for the SegmentationPlugin. The
second entry specifies the mixin class added the model admin class for the SegmentationPlugin.

this entry is optional:
CMSPLUGIN_CASCADE = {
 ...
 'segmentation_mixins': (
 ('cmsplugin_cascade.segmentation.mixins.EmulateUserModelMixin', 'cmsplugin_cascade.segmentation.mixins.EmulateUserAdminMixin',), # the default
 # other segmentation plugin classes
),
 ...
}

10.2. Usage

When editing djangoCMS plugins in Structure mode, below the section Generic a new plugin
type appears, named Segment.

[image: segment-plugin]

This plugin now behaves as an if block, which is rendered only, if the specified condition
evaluates to true. The syntax used to specify the condition, is the same as used in the Django
template language. Therefore it is possible to evaluate against more than one condition and combine
them with and, or and not as described in boolean operators [https://docs.djangoproject.com/en/dev/ref/templates/builtins/#boolean-operators] in the Django docs

Immediately below a segmentation block using the condition tag if, it is possible to use the
tags elif or else. This kind of conditional blocks is well known to Python programmers.

Note, that when rendering pages in djangoCMS, a RequestContext [https://docs.djangoproject.com/en/1.8/ref/templates/api/#django.template.RequestContext]- rather than a Context-object is used.
This RequestContext is populated by the user object if 'django.contrib.auth.context_processors.auth'
is added to your settings.py TEMPLATE_CONTEXT_PROCESSORS. This therefore is a prerequisite
when the Segmentation plugin evaluates conditions such as user.username == "john".

10.3. Emulating Users

As of version 0.5.0, in djangocms-cascade a staff user or administrator can emulate the
currently logged in user. If this plugin is activated, in the CMS toolbar a new menu tag appears
named “Segmentation”. Here a staff user can select another user. All evaluation conditions then
evaluate against this selected user, instead of the currently logged in user.

It is quite simple to add other overriding emulations. Have a look at the class
cmsplugin_cascade.segmentation.mixins.EmulateUserMixin. This class then has to be added to
your configuration settings CMSPLUGIN_CASCADE_SEGMENTATION_MIXINS. It then overrides the
evaluation conditions and the toolbar menu.

11. Working with sharable fields

Sometime you’d want to remember sizes, links or any other options for rendering a plugin instance
across the project. In order to not have to do this job for each managed entity, you can remember
these settings using a name of your choice, controllable in a special section of the administration
backend.

Now, whenever someone adds a new instance using this plugin, a select box with these remembered
settings appears. He then can choose from one of the remembered settings, which frees him to
reenter all the values.

11.1. Configure a Cascade Plugins to optionally share some fields

Configuring a plugin to share specific fields with other plugins of the same type is very easy.
In the projects settings.py, assure that 'cmsplugin_cascade.sharable' is part of your
INSTALLED_APPS.

Then add a dictionary of Cascade plugins, with a list of fields which shall be sharable. For
example, with this settings, the image plugin can be configured to share its sizes and rendering
options among each other.

CMSPLUGIN_CASCADE = {
 ...
 'plugins_with_sharables': {
 'BootstrapImagePlugin': ('image-shapes', 'image-width-responsive', 'image-width-fixed', 'image-height', 'resize-options',),
 },
 ...
}

11.2. Control some named settings

Whenever a plugin is configured to allow to share fields, at the bottom of the plugin editor a
special field appears:

[image: remember-settings]

By activating the checkbox, adding an arbitrary name next to it and saving the plugin, an entity
of sharable fields is saved in the database. Now, whenever someone starts to edit a plugin of this
type, a select box appears on the top of the editor:

[image: use-shared-settings]

By choosing a previously named shared settings, the configured fields are disabled for input and
replaced by their shared field’s counterparts.

In order to edit these shared fields in the administration backend, one must access
Home › Cmsplugin_cascade › Shared between Plugins. By choosing a named shared setting, one can
enter into the shared field’s editor. This editor auto adopts to the fields declared as shared,
hence will change from entity to entity. For the above example, it may look like this:

[image: edit-shared-fields]

In this editor one can change these shared settings globally, for all plugin instances where this
named shared settings have been applied to.

12. Customize CSS classes and inline styles

Plugins shipped with djangocms-cascade offer a basic set of CSS classes as declared by the
chosen CSS framework. These offered classes normally do not fulfill the requirements for real world
sites. This is specially true, if you extend your site with one of the many available
Bootstrap themes [https://themes.getbootstrap.com/].

While djangocms-cascade is easily expendable, it would be overkill to re-implement the available
plugins, just to add an extra field for a customized CSS class or an extra inline style. For that
purpose, one can add a set of potential CSS classes and potential CSS inline styles for Cascade
plugins, enabled for this feature. Moreover, this feature can be adopted individually on a per-site
base.

12.1. Configure a Cascade plugins to accept extra fields

It is possible to configure each plugin to accept an additional ID tag, one ore more CSS classes or
some inline styles. By default the plugins: BootstrapButtonPlugin, BootstrapRowPlugin,
BootstrapJumbotronPlugin and the SimpleWrapperPlugin are eligible for accepting extra styles.
Additionally, by default the user can override the margins of the HeadingPlugin and the
HorizontalRulePlugin.

To override these defaults, first assure that 'cmsplugin_cascade.extra_fields' is part of
your INSTALLED_APPS. Then add a dictionary of Cascade plugins, which shall be extendible
to the project’s settings.py, for instance:

CMSPLUGIN_CASCADE = {
 ...
 'plugins_with_extra_fields': {
 'BootstrapButtonPlugin': PluginExtraFieldsConfig(),
 'BootstrapRowPlugin': PluginExtraFieldsConfig(),
 'BootstrapJumbotronPlugin': PluginExtraFieldsConfig(inline_styles={
 'extra_fields:Paddings': ['padding-top', 'padding-bottom'],
 'extra_units:Paddings': 'px,em'}),
 'SimpleWrapperPlugin': PluginExtraFieldsConfig(),
 'HeadingPlugin': PluginExtraFieldsConfig(inline_styles={
 'extra_fields:Paddings': ['margin-top', 'margin-right', 'margin-bottom', 'margin-left'],
 'extra_units:Paddings': 'px,em'}, allow_override=False),
 'HorizontalRulePlugin': PluginExtraFieldsConfig(inline_styles={
 'extra_fields:Paddings': ['margin-top', 'margin-bottom'],
 'extra_units:Paddings': 'px,em'}, allow_override=False),
 },
 ...
}

Here the class PluginExtraFieldsConfig is used to fine-tune which extra fields can be
set while editing the plugin. Assigning that class without arguments to a plugin, allows us to
specify the extra fields using the Django administration backend at:

Home › django CMS Cascade › Custom CSS classes and styles

Here the site administrator can specify for each concrete plugin, which extra CSS classes, ID tags
and extra inline styles shall be used.

If we use PluginExtraFieldsConfig(allow_override=False), then the site administrator can not
override the configuration using the backend. Then every extra field must be specified by the
configuration directive:

12.2. Enable extra fields through the administration backend

To enable this feature, in the administration backend navigate to

Home › django CMS Cascade › Custom CSS classes and styles and click onto the button named
Add Custom CSS classes styles.

From the field named “Plugin Name”, select one of the available plugins, for example
Bootstrap Simple Wrapper. Then, from the field named “Site”, select the site where those extra
styles shall be applied.

[image: customize-styles]

12.2.1. Allow ID

With “Allow id tag” enabled, an extra field will appear on the named plugin editor. There a user
can add any arbitrary name which will be rendered as id="any_name" for the corresponding plugin
instance.

Allowing ID’s is specially useful for the Heading Plugin, so the Links can point directly to
that ID (bookmark linking).

12.2.2. CSS classes

In the field named “CSS class names”, the administrator may specify arbitrary CSS classes separated
by commas. One of these CSS classes then can be added to the corresponding Cascade plugin. If
more than one CSS class shall be addable concurrently, activate the checkbox named “Allow multiple”.

12.2.3. CSS inline styles

The administrator may activate all kinds of CSS inline styles by clicking on the named checkbox. For
settings describing distances, additionally specify the allowed units to be used.

If a user opens the corresponding plugin inside the Structure View, he will see an extra select
field to choose the CSS class and some input fields to enter say, extra margins, heights or
whatever has been activated.

12.2.3.1. Use it rarely, use it wise

Adding too many styling fields to a plugin can mess up any web project. Therefore be advised to use
this feature rarely and wise. If many people have write access to plugins, set extra permissions on
this table, in order to not mess things up. For instance, it rarely makes sense to activate
min-width, width and max-width.

12.3. Dynamically add styles to the Text-Editor

In Cascade it is also possible to dynamically add styles to the CKTextEditor.
Ensure that in your settings.py the following is active:

Then in the Django-Admin, by adding entries in Start › django CMS Cascade › Text Editor Configs
it is possible to use these special styles inside the text editor.

13. Choose an alternative rendering template

Sometimes you must render a plugin with a slightly different template, other than the given default.
A possible solution is to create a new plugin, inheriting from the given one and overriding
the render_template attribute with a customized template. This however adds another plugin to
the list of registered CMS plugins.

A simpler solution to solve this problem, is to allow a plugin to be rendered with a customized
template out of a set of alternatives.

13.1. Change the path for template lookups

Some Bootstrap Plugins are shipped with templates, which are optimized to be rendered by Angular-UI [http://angular-ui.github.io/bootstrap/versioned-docs/0.13.4/]
rather than the default jQuery. These alternative templates are located in the folder
cascade/bootstrap3/angular-ui. If your project uses AngularJS instead of jQuery, then configure
the lookup path in settings.py with

CMSPLUGIN_CASCADE = {
 ...
 'bootstrap3': {
 ...
 'template_basedir': 'angular-ui',
 },
}

This lookup path is applied only to the Plugin’s field render_template prepared for it. Such a
template contains the placeholder {}, which is expanded to the configured template_basedir.

For instance, the CarouselPlugin defines its render_template such as:

class CarouselPlugin(BootstrapPluginBase):
 ...
 render_template = 'cascade/bootstrap3/{}/carousel.html'
 ...

13.2. Configure Cascade Plugins to be rendered using alternative templates

All plugins which offer more than one rendering template, shall be added in the projects
settings.py to the dictionary CMSPLUGIN_CASCADE['plugins_with_extra_render_templates'].
Each item in this dictionary consists of a key, naming the plugin, and a value containing a list of
two-tuples. The first element of this two-tuple must be the templates filename, while the second
element shall contain an arbitrary name to identify that template.

Example:

CMSPLUGIN_CASCADE = {
 ...
 'plugins_with_extra_render_templates': {
 'TextLinkPlugin': (
 ('cascade/link/text-link.html', _("default")),
 ('cascade/link/text-link-linebreak.html', _("with linebreak")),
)
 },
 ...
}

13.2.1. Usage

When editing a djangoCMS plugins with alternative rendering templates, the plugin editor
adds a select box containing choices for alternative rendering templates. Choose one other than the
default, and the plugin will be rendered using that template.

14. Conditionally hide some plugin

Sometimes a placholder contains some plugins, which temporarily should not show up while rendering.
If this feature is enabled, then instead of deleting them, it is possible to hide them.

14.1. Enable the meachanism

In the projects settings.py, add:

CMSPLUGIN_CASCADE = {
 ...
 'allow_plugin_hiding': True,
 ...
}

By default, this feature is disabled. If enabled, djangocms-cascade adds a checkbox to every
plugin editor. This checkbox is labeled Hide plugin. If checked, the plugin and all of it’s
children are not rendered in the current tree. To easily distinguish hidden plugins in structure
mode, they are rendered using a shaded background.

15. The CMS Clipboard

DjangoCMS offers a Clipboard where one can copy or cut and add a subtree of plugins to the DOM.
This Clipboard is very handy when copying plugins from one placeholder to another one, or to another
CMS page. In version 0.7.2 djangocms-cascade extended the functionality of this clipboard, so
that the content of the CMS clipboard can be persited to – and restored from the database. This
allows the site-administrator to prepare a toolset of plugin-trees, which can be inserted anywhere
at any time.

15.1. Persisting the Clipboard

In the context menu of a CMS plugin, use Cut or Copy to move a plugin together with its
children to the CMS clipboard. In Edit Mode this clipboard is available from the primary menu
item within the CMS toolbar. From this clipboard, the copy plugins can be dragged and dropped to
any CMS placeholder which is allowed to accept the root node.

Since the content of the clipboard is overridden by every operation which cuts or copies a tree of
plugins, djangocms-cascade offers some functionality to persist the clipboard’s content. To do
this, locate Persited Clipboard Content in Django’s administration backend.

[image: persist-clipboard]

The Identifier field is used to give a unique name to the persited clipboard entity.

The Save button fetches the content from the CMS clipboard and persists it.

The Restore button replaces the content of the CMS clipboard with the current persisted entity.
This is the opposite operation of Save.

Since the clipboard content is serialized using JSON, the site administrator can grab and paste it
into another site using djangocms-cascade, if persisting clipboards are enabled.

15.1.1. Configuration

Persisting the clipboards content must be configured in the projects settings.py:

INSTALLED_APPS = (
 ...
 'cmsplugin_cascade',
 'cmsplugin_cascade.clipboard',
 ...
)

15.1.2. Caveats

Only CMS plugins from the Cascade eco-system are eligible to be used for persisting. This is because
they already use a JSON representation of their content. The only exception is the TextPlugin,
since djangocms-cascade added some serialization code.

16. Use Cascade outside of the CMS

One of the most legitimate points djangocms-cascade can be criticised for, is the lack of
static content rendering. Specially in projects, where we want to work with static pages instead
of CMS pages, one might fall back to handcrafting HTML, giving up all the benefits of rapid
prototyping as provided by the Cascade plugin system.

Since version 0.14 of djangocms-cascade, one can prototype the page content and export it as
JSON file using The CMS Clipboard. Later on, one can reuse that persisted data and create the same
content outside of a CMS page. This is specially useful, if you must persist the page content
in the project’s version control system.

16.1. Usage

After the placeholder of a CMS page, is filled up with plugins from djangocms-cascade,
switch into Structure Mode, go to the context menu of that placeholder and click Copy all.

Next, inside Django’s administration backend, go to

Home › Django CMS Cascade › Persited Clipboard Content

and click onto Add Persisted Clipboard Content. The Data field will now be filled with a
cascade of plugins serialized as JSON data. Copy that data and paste it into a file locatable
by Django’s static file finders, for example myproject/static/myapp/cascades/slug.json.

16.2. In Templates

Create a Django template, where instead of adding a Django-CMS placeholder, use the templatetag
render_cascade. Example:

{% load cascade_tags %}

{% render_cascade "myapp/cascades/slug.json" %}

This templatetag now renders the content just as if it would be rendered by the CMS. This means
that changing the template of a djangocms-cascade plugin, immediately has effect on the rendered
output. This is so to say Model View Control, where the Model is the content peristed as JSON,
and the View is the template provided by the plugin. It separates the composition of HTML components
from their actual representation, allowing a much better division of work during the page creation.

16.3. Caveats when creating your own Plugins

When developing your own plugins, consider the following precautions:

16.3.1. Invoking super

Instead of invoking super(MyPlugin, self).some_method() use
self.super(MyPlugin, self).some_method(). This is required because djangocms-cascade
creates a list of “shadow” plugins, which do not inherit from CMSPluginBase.

16.3.2. Templatetag render_plugin

Django-CMS provides a templatetag render_plugin. Don’t use it in templates provided by
djangocms-cascade plugins. Instead use the templatetag named render_plugin from
Cascade. Example:

{% load cascade_tags %}
<div class="some-css-class">
{% for plugin in instance.child_plugin_instances %}
 {% render_plugin plugin %}
{% endfor %}
<div>

16.4. Caching

Even though rendering using this templatetag is slightly faster than the classic placeholder
tag provided by the CMS (because we don’t hit the database for each plugin instance), combining
each plugin template with its context also takes its time. Therefore plugins rendered by
render_cascade, by default are cached as well, just as their CMS counterparts.

This caching is disabled for plugins containing the attribute cache = False. It can be turned
off globally using the directive CMSPLUGIN_CASCADE['cache_strides'] = True in the project’s
settings.py.

17. Integrate Sphinx Documentation

Restructured Text (ReST) is the de facto standard for documenting Python projects and is even widely
used outside of this realm, by applications written in other languages. Sphinx [http://www.sphinx-doc.org/] is a compiler to
generate HTML, Latex, PDF, e-books, etc. out of sources written in ReST.

HTML rendered by Sphinx, typically is rendered as static content by the web server. This makes it
difficult to serve documentation, side by side with content from django-CMS, because these are
completely different technologies. Furthermore, since Sphinx uses Jinja2 templates, but django-CMS’s
internal templatetags are not available for Jinja2, template sharing is not possible.

Therefore djangocms-cascade offers an integration service, which makes it possible to integrate
documentation generated by Sphinx, unintrusively inside the menu tree of django-CMS.

17.1. Configuration

To the project’s settings.py, add these options to the configuration directives:

INSTALLED_APPS = [
 ...
 'cmsplugin_cascade',
 'cmsplugin_cascade.sphinx',
 ...
]

CMS_TEMPLATES = [
 ...,
 ('path/to/documentation.html', "Documentation Page"),
 ...
]

SPHINX_DOCS_ROOT = '/path/to/docs/_build/fragments'

Replace 'path/to/documentation.html' with a filename pointing to your documentation
root template (see below).

Point SPHINX_DOCS_ROOT onto the directory, into which the HTML page fragments are generated.

17.1.1. Configure Sphinx Builder

Locate the file Makefile inside the docs folder and add another target to it:

fragments:
 $(SPHINXBUILD) -b fragments $(ALLSPHINXOPTS) $(BUILDDIR)/fragments
 @echo
 @echo "Build finished. The HTML fragments are in $(BUILDDIR)/fragments."

Locate the file conf.py and add:

extensions = [
 ...
 'cmsplugin_cascade.sphinx.fragmentsbuilder',
]

By invoking make fragments, Sphinx generates a HTML fragment for each page inside the
documentation folder, typically into docs/_build/fragments. Later we use these fragments
and include them using a normal Django view.

17.2. Integration with the CMS

In Django’s admin backend, add a page as the starting point for the documentation inside
the CMS menu tree. Typically, one would name that page “Documentation” using docs or
documentation as its slug.

In the Advanced Settings tab, choose Documentation Page as the template. This settings
has been configured using the directive CMS_TEMPLATES, as shown above.

As Application, select Sphinx Documentation from the pull down menu. This attaches the
complete documentation tree just below the chosen slug.

Optionally select Documentation Menu from the pull down menu as the Attached menu. It adds
a submenu for each main chapter of the documentation. If omitted, only Documentation is added
the the CMS menu tree.

17.2.1. The Documentation Template

You must provide a template to be used by the documentation view. This template typically extends
a base CMS page template, providing a header, the navigation bar and the footer. In the block,
responsible for rendering the main content, add this template code:

{% extends "path/to/base.html" %}
{% load static cascade_tags %}
...
{% block head %}
{{ block.super }}
<link href="{% static 'cascade/sphinx/css/bootstrap-sphinx.css' %}" rel="stylesheet" type="text/css" />
{% endblock %}
...
{% block main-content %}
 {% if page_content %}
 {{ page_content }}
 {% else %}
 {% sphinx_docs_include "index.html" %}
 {% endif %}
{% endblock %}

This Django template now includes the HTML fragments compiled by Sphinx. This allows us to use
django-CMS and combine it with Sphinx. In the URL, the part behind the documentation’s slug
corresponds 1:1 to the name of the ReST document.

In this example we add a stylesheet to adopt the output to the Bootstrap theme [http://ryan-roemer.github.io/sphinx-bootstrap-theme/README.html] for Sphinx [http://www.sphinx-doc.org/].
Depending on your template layout, the way you import this may vary.

17.2.2. Linking onto Documentation Pages

By overriding the Link Plugin with a special target named Documentation, we can
even add links onto our documentation pages symbolically. This means, that whenever we open the
LinkPlugin editor, an additional target is added. It offers a select box showing all
pages from our documentation tree. This prevents us, having to hard code the URL pointing
onto the documentation.

This feature has to be configured in the project’s settings.py, by replacing the LinkPlugin
with a modified version of itself:

CMSPLUGIN_CASCADE = {
 ...
 'link_plugin_classes': [
 'cmsplugin_cascade.sphinx.link_plugin.SphinxDocsLinkPlugin',
 'cmsplugin_cascade.link.plugin_base.LinkElementMixin',
 'cmsplugin_cascade.sphinx.link_plugin.SphinxDocsLinkForm',
],
 ...
}

18. Extending Cascade

All Cascade plugins are derived from the same base class
cmsplugin_cascade.plugin_base.CascadeModelBase, which stores all its model fields inside a
dictionary, serialized as JSON string in the database. This makes it much easier to extend the
Cascade eco-system, since no database migration 1 is required when adding a new, or
extending plugins from this project.

The database model CascadeModelBase stores all the plugin settings in a single JSON field named
glossary. This in practice behaves like a Django context, but in order to avoid confusion with
the latter, it has been named “glossary”.

Note

Custom Cascade plugins should set the app_label attribute (see
below). This is important so migrations for the proxy models generated by
Cascade are created in the correct app.

If this attribute is not set, Cascade will default to the left-most
part of the plugin’s module path. So if your plugin lives in
myapp.cascadeplugins, Cascade will use myapp as the app label.
We recommend that you always set app_label explicitly.

18.1. Simple Example

This plugin is very simple and just renders static content which has been declared in the template.

from cms.plugin_pool import plugin_pool
from cmsplugin_cascade.plugin_base import CascadePluginBase

class StylishPlugin(CascadePluginBase):
 name = 'Stylish Element'
 render_template = 'myapp/cascade/stylish-element.html'

plugin_pool.register_plugin(StylishPlugin)

If the editor form pops up for this plugin, a dumb message appears: “There are no further settings
for this plugin”. This is because no editable fields have been added to that plugin yet.

18.2. Customize the Plugin Editor

In order to make the plugin remember its settings and other optional data, we must specify a Django
form to be used by the plugin. Since its payload data is stored in a JSON field, we use
django-entangled [https://pypi.org/project/django-entangled/], to map the form fields.

Each of those form fields handles a special field value, or in some cases, a list of field values.
They all require one or more Django form fields, which are rendered by the plugins popup editor.

Let’s add a simple selector to choose between a red and a green color. Do this by adding form
to the plugin class.

from django.forms import ChoiceField
from entangled.forms import EntangledModelFormMixin
from cmsplugin_cascade.plugin_base import CascadePluginBase

class StylishFormMixin(EntangledModelFormMixin):
 color = ChoiceField(
 choices=[('red', 'Red'), ('green', 'Green')],
 label="Element's Color",
 initial='red',
 help_text="Specify the color of the DOM element."
)

 class Meta:
 entangled_fields = {'glossary': ['color']}

class StylishPlugin(CascadePluginBase):
 …
 form = StylishFormMixin

In the plugin’s editor, the form now pops up with a single select box, where the user can choose
between a red and a green element.

The form StylishFormMixin inherits from EntangledModelFormMixin available through the
separate Django app django-entangled [https://pypi.org/project/django-entangled/]. This app allows to edit JSON-Model fields using a standard
Django form. Since djangocms-cascade may extend this form with additional fields, here we use
a special mixin class, rather than a Django ModelForm. Remember to add class Meta to this
form, in order to specify the mapping of form fields inside the JSON field named glossary.

18.3. Special Form Field for Plugin Editors

For single text fields or select boxes, Django’s built-in fields, such as CharField or
ChoiceField can be used. Sometimes these simple fields are not enough, therefore
djangocms-cascade additionally provides special form fields, which makes it easier to
create editors specialized for styling CSS. These special fields are all part of the module
cmsplugin_cascade.fields.

	SizeField

	When entering measurements, such as margins, paddings, widths, heights, etc, one may choose
between different units, such as px, em, rem or %. This fields validates its
input by checking if a unit is specified.

	MultiSizeField

	Use this field to group a list of size input fields together. This for instance is used, to
encapsulate all margins into one list inside the JSON object.

	ColorField

	Use this field when the user shall enter a color value. Since the color picker widget built
into the browser often is inconvenient, the special picker a-color-picker [https://www.npmjs.com/package/a-color-picker] can be used instead.
This external library even supports alpha channels. Simply install it into the directory of
the Django project and add node_modules to the list of STATICFILES_DIRS. Since we can
not leave the color field empty, this field adds a checkbox to inform the plugin editor, if no
color is desired. The latter means, that the color is inherited by an upper DOM element.

	BorderChoiceField

	Use this field to style borders. It adds three input fields, one to set the border width, one for
the border style and one for the border color. The latter uses the special picker
a-color-picker [https://www.npmjs.com/package/a-color-picker], if installed. Otherwise it falls back to the built-in color widget.

18.4. Overriding the Model

Since all djangocms-cascade plugins store their data in a JSON-serializable field, there rarely
is a need to add another database field to the common models CascadeElement and/or
SharableCascadeElement and thus no need for database migrations.

However, quite often there is a need to add or override the methods for these models. Therefore each
Cascade plugin creates its own proxy model [https://docs.djangoproject.com/en/dev/topics/db/models/#proxy-models] on the fly. These models inherit from
CascadeElement and/or SharableCascadeElement and named like the plugin class, with the
suffix Model. By default, their behavior is the same as for their parent model classes.

To extend this behavior, the author of a plugin may declare a tuple of mixin classes, which are
injected during the creation of the proxy model. Example:

class MySpecialPropertyMixin(object):
 def processed_value(self):
 value = self.glossary.get('field_name')
 # process value
 return value

class MySpecialPlugin(LinkPluginBase):
 module = 'My Module'
 name = 'My special Plugin'
 model_mixins = (MySpecialPropertyMixin,)
 render_template = 'my_module/my_special_plugin.html'
 ...

The proxy model created for this plugin class, now contains the extra method processed_value(),
which for instance may be accessed during template rendering.

templates/my_module/my_special_plugin.html:

<div>{{ instance.processed_value }}</div>

Needless to say, that you can’t add any extra database fields to the class named
MySpecialPropertyMixin, since the corresponding model class is marked as proxy.

18.4.1. JavaScript

In case your customized plugin requires some Javascript code to improve the editor’s experience,
please refer to the section client-side.

18.4.2. Adding extra fields to the model

In rare situations, we might want to add extra fields to the model, which inherit from
django.db.models.fields.Field rather than using django-entangled [https://pypi.org/project/django-entangled/] to emulate this
behavior, by mapping Django form fields to a JSON model field (glossary).
In other words: We want a real database field.

This can be achieved by creating a Django model inheriting from
cmsplugin_cascade.models_base.CascadeModelBase and referring to it, such as:

class MyPluginModel(CascadeModelBase):
 class Meta:
 db_table = 'shop_cart_cascadeelement'
 verbose_name = _("Cart Element")

 byte_val = models.PositiveSmallIntegerField("Byte Value")

class MySpecialPlugin(LinkPluginBase):
 module = 'My Module'
 name = 'My special Plugin'
 model = MyModel

18.5. Transparent Plugins

Some of the plugins in Cascade’s ecosystem are considered as transparent. This means that they
logically don’t fit into the given grid-system, but should rather be considered as wrappers of
other HTML elements.

For example, the Bootstrap Panel [http://getbootstrap.com/components/#panels] can be added as child of a Column. However, it may contain
exactly the same plugins, as the Column does. Now, instead of adding the PanelPlugin as
a possible parent to all of our existing Bootstrap plugins, we simply declare the Panel as
“transparent”. It then behaves as it’s own parent, allowing all plugins as children, which
themselves are permitted to be added to that column.

Transparent plugins can be stacked. For example, the Bootstrap Accordion [http://getbootstrap.com/javascript/#collapse] consists of one or more
Accordion Panels. Both of them are considered as transparent, which means that we can add all
plugins to an Accordion Panels, which we also could add to a Column.

18.6. Plugin Attribute Reference

CascadePluginBase is derived from CMSPluginBase, so all CMSPluginBase attributes [https://django-cms.readthedocs.org/en/develop/extending_cms/custom_plugins.html#plugin-attribute-reference] can
also be overridden by plugins derived from CascadePluginBase. Please refer to their
documentation for details.

Additionally BootstrapPluginBase allows the following attributes:

	name

	This name is shown in the pull down menu in structure view. There is not default value.

	app_label

	The app_label to use on generated proxy models. This should usually be the
same as the app_label of the app that defines the plugin.

	tag_type

	A HTML element into which this plugin is wrapped. Generic templates can render their
content into any tag_type. Specialized rendering templates usually have a hard coded tag
type, then this attribute can be omitted.

	require_parent

	Default: True. This differs from CMSPluginBase.

Is it required that this plugin is a child of another plugin? Otherwise the plugin can be added
to any placeholder.

	parent_classes

	Default: None.

A list of Plugin Class Names. If this is set, the plugin may only be added to plugins listed
here.

	allow_children

	Default: True. This differs from CMSPluginBase.

Can this plugin have child plugins? Or can other plugins be placed inside this plugin?

	child_classes

	Default: A list of plugins, which are allowed as children of this plugin. This differs from
CMSPluginBase, where this attribute is None.

Do not override this attribute. DjangoCMS-Cascade automatically generates a list of allowed
children plugins, by evaluating the list parent_classes from the other plugins in the pool.

Plugins, which are part of the plugin pool, but which do not specify their parents using the
list parent_classes, may be added as children to the current plugin by adding them to the
attribute generic_child_classes.

	generic_child_classes

	Default: None.

A list of plugins which shall be added as children to a plugin, but which themselves do not
declare this plugin in their parent_classes.

	default_css_class

	Default: None.

A CSS class which is always added to the wrapping DOM element.

	default_inline_styles

	Default: None.

A dictionary of inline styles, which is always added to the wrapping DOM element.

	get_identifier

	This is a classmethod, which can be added to a plugin to give it a meaningful name.

Its signature is:

@classmethod
def get_identifier(cls, obj):
 return 'A plugin name'

This method shall be used to name the plugin in structured view.

	form

	Override the form used by the plugin editor. This must be a class inheriting from
entangled.forms.EntangledModelFormMixin. Remember to list all form fields in
entangled_fields inside the Meta class.

	model_mixins

	Tuple of mixin classes, with additional methods to be added the auto-generated proxy model
for the given plugin class.

Check section “Overriding the Model” for a detailed explanation.

18.7. Plugin Permissions

To register (or unregister) a plugin, simply invoke ./manage.py migrate cmsplugin_cascade. This
will add (or remove) the content type and the model permissions. We therefore can control in a very
fine grained manner, which user or group is allowed to edit which types of plugins.

Footnotes

	1

	After having created a customized plugin, it must be registered in Django’s
permission system, otherwise only administrators, but no staff users, are allowed to add,
change or delete them.

19. Generic Plugins

Cascade is shipped with a few plugins, which can be used independently of the underlying CSS
framework. To avoid duplication, they are bundled into the section Generic and are available
by default in the placeholders context menu.

All these plugins qualify as plugins with extra fields, which means that they can be configured
by the site administrator to accept additional CSS styles and classes.

19.1. SimpleWrapperPlugin

Use this plugin to add a wrapping element around a group of other plugins. Currently these HTML
elements can be used as wrapper: <div>, , <section>, <article>. There is one
special wrapper named naked. It embeds its children only logically, without actually embedding
them into any HTML element.

19.2. HorizontalRulePlugin

This plugins adds a horizontal rule <hr> to the DOM. It is suggested to enable the
margin-top and margin-bottom CSS styles, so that the ruler can be positioned
appropriately.

19.3. HeadingPlugin

This plugins adds a text heading <h1>…``<h6>`` to the DOM. Although simple headings can be
achieved with the TextPlugin, there they can’t be styled using special CSS classes or styles.
Here the HeadingPlugin can be used, since any allowed CSS class or style can be added.

19.4. CustomSnippetPlugin

Not every collection of DOM elements can be composed using the Cascade plugin system. Sometimes one
might want to add a simple HTML snippet. Altough it is quite simple to create a customized plugin
yourself, an easier approach to just render an arbitrary HTML snippet, is to use the
CustomSnippetPlugin. This can be achieved by adding the customized template to the project’s
settings.py:

CMSPLUGIN_CASCADE = {
 # other settings
 'plugins_with_extra_render_templates': {
 'CustomSnippetPlugin': [
 ('myproject/snippets/custom-template.html', "Custom Template Identifier"),
 # other tuples
],
 },
}

Now, when editing the page, a plugin named Custom Snippet appears in the Generic section in
the plugin’s dropdown menu. This plugin then offers a select element, where the site editor then can
chose between the configured templates.

19.4.1. Adding children to a CustomSnippetPlugin

It is even possible to add children to the CustomSnippetPlugin. Simple add these templatetag_s
to the customized template, and all plugins which are children of the CustomSnippetPlugin will
be rendered as well.

{% load cms_tags %}
<wrapping-element>
{% for plugin in instance.child_plugin_instances %}
 {% render_plugin plugin %}
{% endfor %}
</wrapping-element>

20. Release History

20.1. 1.1.9

	Fix: Handle float values in size fields expecting em-s and rem-s.

20.2. 1.1.8

	Fix: Handle plugins with defined but empty forms.

20.3. 1.1.7

	Support to use use a swappable Image model in django-filer.

20.4. 1.1.6

	Fix regression introduced in 1.1.5: In BootstrapButtonPlugin, Strides did not work anymore.

	Fallback to empty form, if a Cascade plugin had not a form enheriting from EntangledModelFormMixin.

20.5. 1.1.5

	Fix regression introduced in 1.1.4: In LinkSearchField reduce the initial number of choices for
the ModelChoice field to max. 15 entities.

20.6. 1.1.4

	Add special unit auto to the existing sizing units. Allow it as unit for element heights in Jumbotron.

	Adopt JavaScript code for some plugins by enforcing the loading order, so that the file query.init.js
always is loaded before its plugin-JS.

	In Carousel plugin, only allow pixels as unit.

	Fix problem of possible non-existing folder, when deleting an icon font.

	On plugins with more than one rendering template, allow to deactivate that choice actively.

	Actively check, that django_select2 is installed.

	Fix: Pasting an invalid URL into the LinkPluigin’s external link field, could cause a KeyError.

	In In LinkPlugin, render search results as safe html, without htmlentities.

	Fix: When rendering the editor of a LinkPlugin on sites with thousands of CMS pages, it took considerably
too long.

	Allows the user to paste an existing URL into the CMS link box, pointing onto the correct CMS page.

20.7. 1.1.3

	Fix problem in rendering the plugin’s identifier, if Bootstrap Row is created with flexible widths columns.

20.8. 1.1.2

	Prepend admin/js/jquery.init.js in front of JS file paths using django.jQuery. This is required by a
change in Django-2.2 (https://docs.djangoproject.com/en/2.2/releases/2.2/#merging-of-form-media-assets).

20.9. 1.1.1

	Support for django-CMS version 3.7 and Django version 2.2.

	In the CMS-Toolbar: Segmentation > Clear emulations is enabled only, if emulations are active.

20.10. 1.1

	In BootstrapJumbotrom: Add multiple fields to set height in all five breakpoints.

	Allow Jumbotron to be child of a Bootstrap Column.

	Fix regression in JavaScript part of Jumbotron: Some HTML selectors did not work in version 1.0.

	Fix regression in ColorField of Jumbotron. Background color is rendered correctly.

	MultiSizeField accepts initial as single value or list in addition to dictionary.

	Add reusable field CascadeImageField to reference images in django-filer.

20.11. 1.0 (Warning: API changes!)

	Add support for Django-2.0/2.1.

	Drop support for Python-2.7.

	Introduce a much simpler way for writing customized CMS plugins. Instead of using a special multi-widget,
thanks to django-entangled [https://github.com/jrief/django-entangled], now all plugins use Django forms to create the editors for their plugin models.
As with previous versions of djangocms-cascade, all data is kept in a JSON field, but in a slightly
different format. Therefore you must invoke ./manage.py migrate cmsplugin_cascade after upgrading.

	If used in your project’s settings, change CMSPLUGIN_CASCADE['link_plugin_classes'] to a 2-tuple
providing a LinkPluginBase- and a LinkForm-class.

20.12. 0.19

	For each django-CMS page, djangocms-cascade optionally adds a one-to-one relation onto
a page extension named CascadePage. This model has been extended to optionally point onto an
icon font and a font symbol. In djangocms-bootstrap version 1.1 this symbol now can be
rendered in front of the page title.

Remember to invoke ./manage.py migrate cmsplugin_cascade.

20.13. 0.18.2

	Fixed: CSS files, such as those extracted from an icon-font, served from the /media folder
can not be compressed by django-compressor. To prevent this, an alternative compressor for
Sekizai’s templatetag {% render_block "css/js" ... %} has been added. Adopt your templates!

20.14. 0.18.1

	Fix problem with PicturePlugin: subject_location not honored.

	Use predefined margins for HorizontalRulePlugin in Bootstrap-4.

	In Django admin: jquery.init.js must be the first dependency in admin media.

20.15. 0.18

	In Plugins using Icons, such as TextIconPlugin, BootstrapButtonPlugin and
FramedIconPlugin, it now is possible to select the Icon Font. This was the behaviour <0.17 and
has been dropped, because back then, icons using two or more different fonts on he same page, lead
to confusion. By enforcing a specific CSS icon prefix, it now is possible to use as many different
icon fonts, as you want, on the same page.

	In your settings.py replace CKEDITOR_SETTINGS['stylesSet'] by
format_lazy('default:{}', reverse_lazy('admin:cascade_texteditor_config')).

	Add SimpleIconPlugin, which renders an icon without any frame.

	Add a special link type to download arbitrary files. All plugins which can link, can now set a
link onto a downloadable file, managed by django.Filer.

	Add BootstrapYoutubePlugin which can be used to embed video available on YouTube.

	When managing Icon Fonts, one entry can be set as the default font.

	Fix: Hide link title, when no linking is desired.

	In plugins with links, refactor the usage of get_form by using a new VoluntaryLinkForm.

	Plugin BootstrapSecondaryMenuPlugin can be used outside of columns.

	Add property floats to mixin BootstrapUtilities in order to handle Bootstrap’s float
utilities.
Replace field quick_float in BootstrapButton against this mixin property.

	Card plugin offers three distinct children for Header, Body and Footer. Themselves, they can be
extended individually.

20.16. 0.17.10

	Fix problem of missing referer, required to determine the current page when accessing an
IconFontPlugin from inside the CKEditor.

20.17. 0.17.9

	Catch IconFont exceptions, if CKEditor is used outside of CMS pages.

	Fix: Supress AttributeError in BootstrapCardPlugin.get_identifier.

20.18. 0.17.8

	For better reusability of IconFont-s: Refactor method unzip_archive into external
utility function.

20.19. 0.17.7

	Fix: Restore-to-Clipboard with data from differently configured instances of Cascade
may cause an Internal Server Error. Now such an import shows an error message importing
whatever is parsable.

	Add role="button" to the ButtonPlugin.

	Optionally add CSS class stretched-link introduced in Bootstrap-4.3 to .

	Fix: We can not see the SVG file, if the image file existed and was not found, specifically
when copying a Persisted clipboard.

	Fix: If jsonfield is serialized as string, convert and reload as JSON.

	Fix: ImagePlugin / PicturePlugin can’t be copied by clipboard CMS.

	Fix: Strides Plugin Element object has no attribute placeholder.

20.20. 0.17.6

	Fix: Tabset support for Bootstrap-4 using jQuery.

20.21. 0.17.5

	Fix: Limit the number of results to 16 while searchung for a link.

20.22. 0.17.4

	Fix: TextIconPlugin does not raise an exception if no IconFont was selected for the current page.

20.23. 0.17.3

	Use HeavySelect2Widget to choose the CMS page if django-select2 is available.

	For ButtonPlugin, make IconFont optional.

	Fix: Limit number of decimal places in breakpoint selection to one.

	Increase width of select2 widget to 400px.

	Add feature: if a plugin use ImageFormMixin and that the source of the media is missing,
instead it uses a svg with old witdh and heigth who use srcset.

20.24. 0.17.2

	Fix problem with lazy evaluation during initialization by lazy formating translated strings
in BootstrapUtilities.

	Fix font-size icon don’t work without text_align.

	In HeadingPlugin set width of content field to 100%.

	Add nicer ColorPicker widget for fields containing a color.

20.25. 0.17.1

	User margin classes for HeadingPlugin as provided by Bootstrap-4.

	In SectionMixin, fix problem if no cascadepage is associated with CMS page.

	Fix: Can add BootstrapColumn with interface +.

	Fix: Add missing file carsousel template file.

	Render a nicer warning box if plugin template not found.

	Fix problem with missing placeholderreference.

	Adopted examples to support Bootstrap-3 as well as Bootstrap-4.

	Add filter function to find font-icon by name.

20.26. 0.17

	Add support for django-CMS 3.5.

	Add support for Bootstrap-4.

	Drop support for Django-1.9.

	Remove deprectated function cmsplugin_cascade.utils.resolve_dependencies.

	Replace function cmsplugin_cascade.utils.format_lazy by Django’s internal function.

	Font Icons now must be chosen per page, rather than for each Icon plugin. This prevents the
problem of rendering unwanted symbols in case more than one Icon Font was selected on a given CMS
page. Therefore, after migrating to this version of djangocms-cascade, check on all CMS
pages if the selected icon font is the desired one. Use the django-CMS toolbar, and click onto
Page > Choose Icon Font….

	Fix: Prevent double registration of proxy models.

	Append fields to plugins, which are missing in list glossary_fields_order.

20.27. 0.16.3

	Fix CarouselPlugin, if used with newer versions of the angular-ui-bootstrap NPM library.

	Fix corner-case of dysfunctional elif evaluation in SegmentPlugin.

20.28. 0.16.2

	Fix Markdown while uploading to PyPI.

20.29. 0.16.1

	Fix: Compute link of Page object holding documentation menu.

	Fix regression in sharable glossary caused by upgrade to Django-1.11.

	Adopt child plugin editing for django-CMS 3.5 to behave as earlier versions.

	Icons in the Text field may have a foreground color.

20.30. 0.16

	Drop support for Django-CMS CKEditor version 3.4 in favor of version 3.5 and later. In CKEDITOR_SETTINGS
change the skin setting to moono-lisa.

	Remove monkey patch required for django-CMS 3.4. This has been fixed by applying
this pull request: https://github.com/divio/django-cms/pull/5809

	Icons inside the TextPlugin can have an optional link.

	Simplify JavaScript plugins to extend alternative link types.

	Added TextImagePlugin allowing to add simple images inside the CKEditor.

	Move common image functionality into utility class cmsplugin_cascade/image.py.

	Optional checkbox to hide plugin is moved at the end of the editor window.

20.31. 0.15.5

	Fix: ImagePlugin should not have duplicate css_classes and inline_styles if there is a link.

	Fix regression: Cascade Clipboard did not work anymore with Django<=1.10.

	Fix: If USE_THOUSAND_SEPARATOR was set to `True, some templates where not unlocalized
properly.

20.32. 0.15.4

	Fix: In FramedIconPlugin, use ColorWidget for glossary attribute color instead of
using a text field. This allows to inherit the foreground color from the given CSS settings.
This fix required to run migration 0018_iconfont_color.

	Fix: A Bootstrap Row now can be the child of a Jumbotron Plugin.

	Added a CMSAppHook named “Sphinx Documentation” which routes a documentaion tree directly onto
the SphinxDocsView. Therefore the documentation tree can be handled directly by the CMS and
doesn’t require any special routes in the project’s URL config.

20.33. 0.15.3

	Bugfix: If more than one CheckboxInput in plugin only the first seem work correctly.

	Bugfix: Cascade works properly if 'cmsplugin_cascade.icon' is missing in INSTALLED_APPS.

20.34. 0.15.1 and 0.15.2

	Fixed one failing occurrence of settings.SPHINX_DOCS_ROOT.

20.35. 0.15

	Posibility to integrate documentation pages generated by Sphinx, manged by the CMS menu tree.

20.36. 0.14.4

	Adopted button- and container selection widget rendering to work with Django-1.11.

	Fixed clipboard issued regarding Django-1.11.

20.37. 0.14.3

	Fix: If plugin is missing, now templatetag render_plugin renders empty string, instead
of raising a TemplateSyntaxError.

	Fix: Method RenderTemplateMixin.get_render_template() now properly expands templates with
placeholders.

20.38. 0.14.2

	In Leaflet Map Plugin:
* For unset markers, place the position into the center of the current map.
* Fix positioning of the markers anchor.

	When using templatetag render_cascade, the HTML content is cached to improve performance.

20.39. 0.14.1

	Restored deleted font files.

	Fix template for rendering a Google map.

	Add fields offset and limit to SecondaryMenuPlugin, to segment the menus.

	Fix bug in HeadingPlugin: Can not be used in static_placeholder tag.

	Fix bug in HeadingPlugin: HTML entities, such as ampersand can be used as content.

	Fix in Panel Plugin: Show identifier in Placeholder tree.

	Fix in Section Plugin: Can now be used in static_placeholder.

20.40. 0.14

	Added static rendering of a serialized representation of plugins copied from a placeholder
to the clipboard. For details, please read on how to Use Cascade outside of the CMS.

20.41. 0.13.1

	Prepare for Django-1.11 compatibility: Replace renderer classes by specialized widgets
overriding its render() method.

20.42. 0.13

	Added Leaflet Plugin which allows to integrate interactive maps from Google, Mapbox and
OpenStreetMap. The editor can add any number of markers using arbitrary logos with an optional
popup box.

	Refactored the app’s settings modules to use an AppSettings class, rather than merging
application specific settings on the fly.

20.43. 0.12.5

	Fixed: Wrapper for transparent plugins did not find all children which declared
these kind of plugins as their parents.

20.44. 0.12.4

	Fixed: Initial Image is reseted after reopening Image plugin editor.

	Changed order of fields in Accordion plugin editor.

	Moved directory workdir for demo project from root folder into examples.

20.45. 0.12.3

	Fixed: When using an Element ID while adding a Heading Plugin, under certain circumstances
the validation ran into an infinite loop.

20.46. 0.12.2

	Fixed: Allow transparent instances as root objects.

20.47. 0.12.1

	Fixed: Do not invoke {% addtoblock "css" %}... for empty values of stylesheet_url.

	Renamed buttons in clipboard admin to “Insert Data” (instead of “Save”) and “Restore Data”
(instead of “restore”).

20.48. 0.12.0

	Added compatibility for Django version 1.10.

	Added compatibility for django-CMS version 3.4.

	Added monkey patch to resolve issues handled by PR https://github.com/divio/django-cms/pull/5809

	Added compatibility for djangocms-text-ckeditor-3.4.

	Important for AngularJS users: Please upgrade to angular-ui-bootstrap version 0.14.3. All
versions later than 0.13 use the prefix uib- on all AngularJS directives, hence this upgrade
is required.

	In the CarouselSlide plugin, caption is added as a child TextPlugin instead of using the
glossary. Currently the migration of TextLinkPlugins inside this caption field does not work
properly. Please create an issue, if you really need it.

	Added method value_omitted_from_data to JSONMultiWidget to override the Django method
implemented in django.forms.widgets.MultiWidget.

	In cmsplugin_cascade.models.CascadeElement the foreign key shared_glossary now is marked
as editable. Instead to plugins without sharable glossary, the attribute
exclude = ['shared_glossary'] is added.

	Instead of handling ring.js plugin inheritance through get_ring_bases(), Cascade plugins
just have to add ring_plugin = '...' to their class declaration.

	Function cmsplugin_cascade.utils.resolve_dependencies is deprecated, since Javascript
dependencies now are handled via their natural inheritance relation.

	The configuration option settings.CMSPLUGIN_CASCADE['dependencies'] has been removed.

	Added method save() to model SharedGlossary, which filters the glossary to be stored to
only those fields marked as sharable.

	Accessing the CMS page via plugin_instance.page is deprecated and has been replaced by
invocations to plugin_instance.placeholder.page.

	Removed directory static/cascade/css/fonts/glyphicons-halflings, since they are available
through the Bootstrap npm packages.

	All Javascript files accessing a property disabled, now use the proper jQuery function
intended for it.

	Added interface to upload fonts and use them as framed icons, text icons or button decorators.

	The permission system now is fine grained. Administrators can give their staff users
add/change/delete permissions to each of the many Cascade plugins. When adding new plugins, this
does not even require a database migration.

	Fixed: On saving a CarouselPlugin, the glossary of it’s children, ie. CarouselSlidePlugin,
is sanitized.

	Handle the high resolution of the PicturePlugin through srcset rather than a @media
query.

	Handle the high resolution background of the JumbotronPlugin through image-set rather than
a @media query.

	Use default configurations from provides Cascade settings rathern than from the Django project.

20.49. 0.11.1

	Added preconfigured FilePathField to prevent the creation of useless migration files.

	SegmentPlugin.get_form OrderedDict value lookups now compatible with python3.

	Fixed database migration failing on multiple database setup.

20.50. 0.11.0

	Instead of adding a list of PartialFormField``s named ``glossary_fields, we now can add these
fields to the plugin class, as we would in a Django forms.Form or models.Model, for
instance: fieldname = GlossaryField(widget, label="A Label", initial=some_value) instead of
glossary_fields = <list-or-tuple-of PartialFormField s>. This is only important for third
party apps inheriting from CascadePluginBase.

Remember: In some field names, the - (dash) has been replaced against an _
(underscore). Therefore please run ./manage.py migrate cmsplugin_cascade which modifies the
plugin’s payloads.

20.51. 0.10.2

	Fix #188: Using shared settings does not remember it’s value.

20.52. 0.10.1

	Fix #185: Undefined variables in case of uncaught exception.

20.53. 0.10.0

	Added BootstrapJumbotronPlugin. This for instance can be used to place background images
extending over the full width of a page using a parallax effect.

	Experimental: Utility to manage font icons, so that symbol icons can be used anywhere in any
size.

	CMSPLUGIN_CASCADE['plugins_with_extra_fields'] is a dict instead of a tuple. This allows
the site administrator to enable extra styles globally and without adding them using the
administration backend.

	Tuples in CMSPLUGIN_CASCADE['bootstrap3']['breakpoints'] now accepts five parameters instead
of four. The 5th parameter specifies the image width for fluid containers and the Jumbotron
plugin.

	The plugin’s change form now can add an introduction and a footnote HTML. This is useful to add
some explanation text.

20.54. 0.9.4

	Added function .utils.validate_link to check if submitted link information is valid.

20.55. 0.9.3

	Fixed: enabled subject_location did not work properly for ImagePlugin and PicturePlugin.

	Fixed indention in admin interface for extra fields model.

	Moved template ‘testing.html’ -> ‘cascade/testing.html’.

	Added German translations.

20.56. 0.9.2

	Restore global jQuery object (required by the Select2 widget) in explicit file instead of doing
it implicitly in linkpluginbase.js

20.57. 0.9.1

	Prepared for django-1.10

	Upgrade ring.js to version 2.1.0

	In LinkPlugin, forgive if sub-dict link was missing in glossary

	Fixed HTML escaping problem in Bootstrap Carousel

	Increase height of Select2 fields

20.58. 0.9.0

	Compatible with django-cms version 3.3.0

	Converted SharableCascadeElement into a proxy model, sharing the same data as model
CascadeElement. This allows adding plugins to CMSPLUGIN_CASCADE['plugins_with_sharables']
without requiring a data-migration. (Note: A migration merges the former two models, so
please backup your database before upgrading!)

	Add support for Section Bookmarks.

	Fixed: Do not set width/height on -element inside a <picture>, if wrapping container is fluid.

	Replaced configuration settings CMSPLUGIN_CASCADE_LINKPLUGIN_CLASSES against
CMSPLUGIN_CASCADE['link_plugin_classes'] for better consistency.

Note: If you want to continue using django-CMS 3.2 please use djangocms-cascade 0.8.5.

20.59. 0.8.5

	Dropped support for Python-2.6.

20.60. 0.8.4

	Fixed a regression in “Restore from clipboard”.

	Fixed TextLinkPlugin to work again as child of TextPlugin.

	ContainerPlugin can only be added below a placeholder.

	Prepared demo to work with Django-1.10.

	Plugins marked as “transparent” are only allowed as parents,
if they allow children.

20.61. 0.8.3

	Added CustomSnippetPlugin. It allows to add arbitrary custom templates to the project.

	Fixed #160: Error copying Carousel plugin

	Plugins marked as “transparent” can be parents of everybody.

	BootstrapPanelPlugin now accepts inline CSS styles.

20.62. 0.8.2

	Cascade does not create migrations for proxy models anymore. This created major problems if
Cascade components have been switched on and off. All existing migrations of proxy models have
been removed from the migration files.

	Fixed: Response of more than one entry on non unique clipboards.

	Added cmsplugin_cascade.models.SortableInlineCascadeElement which can be used for
keeping sorted inline elements.

	cmsplugin_cascade.bootstrap3.gallery.BootstrapGalleryPlugin can sort its images.

20.63. 0.8.1

	Hotfix: removed invalid dependency in migration 0007.

20.64. 0.8.0

	Compatible with Django-1.9

	Fixed #133: BootstrapPanelPlugin now supports custom CSS classes.

	Fixed #132: Carousel Slide plugin with different form.

	Fixed migration problems for proxy models outside Cascade.

	Replaced SelectMultiple against CheckboxSelectMultiple in admin for extra fields.

	Removed SegmentationAdmin from admin backend.

	Disallow whitespace in CSS attributes.

	Require django-reversion 1.10.1 or newer.

	Require django-polymorphic 0.9.1 or newer.

	Require django-filer 1.1.1 or newer.

	Require django-treebeard 4.0 or newer.

	Require django-sekizai 0.9.0 or newer.

20.65. 0.7.3

	Use the outer width for fluid containers. This allows us to add images and carousels which extend
the browser’s edges.

	Fixed #132: Carousel Slide plugin different form.

	Fixed #133: BootstrapPanelPlugin does not support custom CSS classes.

	Fixed #134: More plugins can be children of the SimpleWrapperPlugin. This allows us to be more
flexible when building the DOM tree.

	BootstrapContainerPlugin now by default accepts extra inline styles and CSS classes.

20.66. 0.7.2

	Add a possibility to prefix Cascade plugins with a symbol of your choice, to avoid confusion
if the same name has been used by another plugin.

	All Bootstrap plugins can override their templates globally though a configuration settings
variable. Usefule to switch between jQuery and AngularJS versions of a widget.

	Added TabSet and TabPanel plugins.

	It is possible to persist the content of the clipboard in the database, retrieve and export
it as JSON to be reimported on an unrelated site.

20.67. 0.7.1

	Added a HeadingPlugin to add single text headings independently of the HTML TextEditorPlugin.

20.68. 0.7.0

Cleanup release, removing a lot of legacy code. This adds some incompatibilities to previous
versions:

	Instead of half o dozen of configuration directives, now one Python dict is used. Therefore
check your settings.py for configurations starting with CMSPLUGIN_CASCADE_....

	Tested with Django-1.8. Support for version 1.7 and lower has been dropped.

	Tested with djangoCMS version 3.2. Support for version 3.0 and lower has been dropped.

	Tested with django-select2 version 5.2. Support for version 4 has been dropped.

	The demo project now uses SASS instead of plain CSS, but SASS is not a requirement during normal
development.

20.69. 0.6.2

	In Segment: A condition raising a TemplateSyntaxError now renders that error inside a HTML
comment. This is useful for debugging non working conditions.

	In Segment: An alternative AdminModel to UserAdmin, using a callable instead of a model field,
now works.

	In Segment: It is possible to use segmentation_list_display = (list-of-fields) in an
alternative AdminModel, to override the list view, when emulating a user.

20.70. 0.6.1

	Added a panel plugin to support the Bootstrap Panel.

	Added experimental support for secondary menus.

	Renamed AccordionPlugin to BootstrapAccordionPlugin for consistency and to avoid future
naming conflicts.

20.71. 0.6.0

	Fixed #79: The column width is not reduced in width, if a smaller column precedes a column for a
smaller displays.

	Fixed: Added extra space before left prefix in buttons.

	Enhanced: Access the link content through the glossary’s link_content.

	New: Plugins now can be rendered using an alternative template, choosable through the plugin
editor.

	Fixed in SegmentationPlugin: When overriding the context, this updated context was only used for
the immediate child of segment. Now the overridden context is applied to all children and
grandchildren.

	Changed in SegmentationPlugin: When searching for siblings, use a list index instead of
get_children().get(position=...).

	Added unit tests for SegmentationPlugin.

	Added support for django-reversion.

	By using the setting CMSPLUGIN_CASCADE_LINKPLUGIN_CLASSES, one can replace the class
LinkPluginBase by an alternative implementation.

	When using Extra Styles distances now can have negative values.

	In caption field of CarouselSlidePlugin it now is possible to set links onto arbitrary pages.

Possible backwards incompatibility:

	For consistency with naming conventions on other plugins, renamed cascade/plugins/link.html
-> cascade/link/link-base.html. Check your templates!

	The setting CMSPLUGIN_CASCADE_SEGMENTATION_MIXINS now is a list of two-tuples, where the first
declares the plugin’s model mixin, while the second declares the model admin mixin.

	Removed from setting: CMSPLUGIN_CASCADE_BOOTSTRAP3_TEMPLATE_DIR. The rendering template now
can be specified during runtime.

	Refactored and moved SimpleWrapperPlugin and HorizontalRulePlugin from
cmsplugin_cascade/bootstrap3/ into cmsplugin_cascade/generic/. The glossary field
element_tag has been renamed to tag_type.

	Refactored LinkPluginBase so that external implementations can create their own version,
which then is used as base for TextLinkPlugin, ImagePlugin and PicturePlugin.

	Renamed: PanelGroupPlugin -> Accordion, PanelPlugin -> AccordionPanelPlugin,
because the Bootstrap project renamed them back to their well known names.

20.72. 0.5.0

	Added SegmentationPlugin. This allows to conditionally render parts of the DOM, depending on
the status of various request object members, such as user.

	Setting CASCADE_LEAF_PLUGINS has been replaced by CMSPLUGIN_CASCADE_ALIEN_PLUGINS. This simplifies
the programming of third party plugins, since the author of a plugin now only must set the member
alien_child_classes = True.

20.73. 0.4.5

	Fixed: If no breakpoints are set, don’t delete widths and offsets from the glossary, as otherwise
this information is lost.

	Fixed broken import for PageSelectFormField when not using django_select2.

	Admin form for PluginExtraFields now is created on the fly. This fixes a rare circular
dependency issue, when accessing plugin_pool.get_all_plugins().

20.74. 0.4.4

	Removed hard coded input fields for styling margins from BootstrapButtonPlugin, since
it is possible to add them through the Extra Fields dialog box.

	[Column ordering](http://getbootstrap.com/css/#grid-column-ordering) using col-xx-push-n
and col-xx-pull-n has been added.

	Fixed: Media file linkplugin.js was missing for BootstrapButtonPlugin.

	Hard coded configuration option EXTRA_INLINE_STYLES can now be overridden by the projects
settings

20.75. 0.4.3

	The templatetag bootstrap3_tags and the templates to build Boostrap3 styled menus,
breadcrumbs and paginator, have been moved into their own repository
at https://github.com/jrief/djangocms-bootstrap3.

	Column ordering [http://getbootstrap.com/css/#grid-column-ordering] using col-xx-push-n and col-xx-pull-n has been added.

20.76. 0.4.2

	Fixed: Allow empty setting for CMSPLUGIN_CASCADE_PLUGINS

	Fixed: Use str(..) instead of b’’ in combination with from __future__ import unicode_literals

20.77. 0.4.1

	Fixed: Exception when saving a ContainerPlugin with only one breakpoint.

	The required flag on a field for an inherited LinkPlugin is set to False for shared settings.

	Fixed: Client side code for disabling shared settings did not work.

20.78. 0.4.0

	Renamed context from model CascadeElement to glossary`. The identifier ``context lead
to too much confusion, since it is used all way long in other CMS plugins, where it has a
complete different meaning.

	Renamed partial_fields in all plugins to glossary_fields, since that’s the model field
where they keep their information.

	Huge refactoring of the code base, allowing a lot of more features.

20.79. 0.3.2

	Fixed: Missing unicode conversion for method get_identifier()

	Fixed: Exception handler for form validation used getattr incorrectly.

20.80. 0.3.1

	Added compatibility layer for Python-3.3.

20.81. 0.3.0

	Complete rewrite. Now offers elements for Bootstrap 3 and other CSS frameworks.

20.82. 0.2.0

	Added carousel.

20.83. 0.1.2

	Fixed: Added missign migration.

20.84. 0.1.1

	Added unit tests.

20.85. 0.1.0

	First published revision.

20.86. Thanks

This DjangoCMS plugin originally was derived from https://github.com/divio/djangocms-style, so the
honor for the idea of this software goes to Divio and specially to Patrick Lauber, aka digi604.

However, since my use case is different, I removed all the existing code and replaced it against
something more generic suitable to add a collection of highly configurable plugins.

Index

Embedding Videos

Staring in 0.18, it is possible to embedd a video inside a Bootstrap column. Each video provider
offers a distinct set of parameters to configure how their videos are broadcasted. Therefore,
djangocms-cascade offers a plugin for each of them.

YouTube

When adding a plugin to a column, select the YouTube. The YouTube URL is found by clicking on
the SHARE button, then copying and pasting it into the URL field in the editor. Select the
right aspect ratio, otherwise you end up with right and left edged cut away.

For all other options, the YouTube plugin editor offers, consult the IFrame Player API [https://developers.google.com/youtube/player_parameters].

Vimeo

Currently no plugin for Vimeo has been written yet. It would however be quite easy to do so.

 # Release Notes for version 1.0

Apart from dropping support for Python-2.7, djangocms-cascade version 1.0 internally changes a lot.
Until version 0.19 it used a special widget cmsplugin_cascade.widgets.JSONMultiWidget which
took care of converting the so named “glossary fields” into an editor, used to change the properties
of all Cascade plugins.

While this editor was able to handle all kinds of primitive data types, such as strings, numeric input,
simple- and multiple choices, it failed to handle references onto foreign keys and other data inputs,
requiring input validation and rectification. Therefore many Cascade plugins turned into kind of hybrids,
using a mixture of classic Django form fields plus one special “glossary” field, using the JSONMultiWidget
mentioned before.

This approach turned out to be impracticable, because input widgets rendered by the form fields could not
be mixed with fields rendered by the JSONMultiWidget. It also was complicated from a point of understanding
and other programmers had difficulties to implement their own plugins.

Therefore in version 1.0, the list of “glossary fields” will be replaced against a slightly modified Django
ModelForm. This form then reads and writes its data from the Django model field
cmsplugin_cascade.models.CascadeElement.glossary, just as it always did. This means that we still
have the advantage of using a JSON field to store arbitrary data, preventing us from having to create a Django
model for each plugin in our database.

The code for reading and writing JSON data from and to this special Django model field (ie. glossary),
has been moved out of dangocms-cascade and into a new Django app named
[django-entangled](https://github.com/jrief/django-entangled). The reason for this code separation is greater
reusability.

Bootstrap 4 Layout

In order to take full advantage of djangocms-cascade, you should be familiar with the
concepts of the Bootstrap Layout [https://getbootstrap.com/docs/4.1/layout/overview/], since all other Bootstrap components depend upon.

Bootstrap Container

A Container is the outermost component the Bootstrap framework knows of. Here the designer can
specify the breakpoints of a web page. By default, Bootstrap offers 5 breakpoints: “extra small”,
“small”, “medium”, “large” and “extra large”. These determine for which kind of screen widths, the
grid system may switch the layout.

The editor window for a Container element offers the possibility to deactivate certain breakpoints.
While this might make sense under certain conditions, it is safe to always keep all four breakpoints
active, since this gives the designer of the web page the maximum flexibility.

[image: edit-container]

Small devices exclusively

If the web page shall be optimized just for small but not for large devices, then you may
optionally disable the larger breakpoints. This doesn’t have any effect on the layout, it just adds
less options to the other editors of the Cascade plugins eco-system.

or, if you prefers the SASS syntax:

@media(min-width: $screen-lg) {
 .container {
 max-width: $container-desktop;
 }
}

Large devices exclusively

If the web page shall be optimized just for large but not for small devices, then disable the
breakpoints for Tiny and/or Small.

Changing the style-sheets then is not required for this configuration setting.

Fluid Container

A variant of the normal Bootstrap Container is the Fluid Container. It can be enabled by a checkbox
in the editors window. Fluid Containers have no hards breakpoints, they adopt their width to
whatever the browser pretends and are slightly larger than their non-fluid counterpart.

A fluid container makes it impossible to determine the maximum width of responsive images for the
large media breakpoint, because it is applied whenever the browser width extends 1200 pixels,
but there is no upper limit. For responsive images in the smaller breakpoints (“tiny”, “small”
and “medium”) we use the width of the next larger breakpoint, but for images in the “large” media
breakpoints we somehow must specify an arbitrary maximum width. The default width is set to 1980
pixels, but can be changed, to say 2500 pixels, using the following configuration in your
settings.py:

CMSPLUGIN_CASCADE = {
 ...
 'bootstrap3': (
 ('xs', (768, 'mobile', _("mobile phones"), 750, 768)),
 ('sm', (768, 'tablet', _("tablets"), 750, 992)),
 ('md', (992, 'laptop', _("laptops"), 970, 1200)),
 ('lg', (1200, 'desktop', _("large desktops"), 1170, 2500)),
),
}

Note

Fluid container are specially useful for Hero images, full-width Carousels and the
Jumbotron plugin. When required, add a free standing fluid container to the placeholder and as
it’s only child, use the picture or carousel plugin. Its content then is stretched to the
browser’s full width.

Bootstrap Row

Each Bootstrap Container may contain one or more Bootstrap Rows. A row does not accept any
configuration setting. However, while editing, one can specify the number of columns. When adding or
changing a row, then this number of columns are added if its value exceeds the current number of
columns. Reducing the number of columns does not delete any of them; they must explicitly be chosen
from the context menu in structure view.

[image: edit-row]

Horizontal Rule

A horizontal rule is used to separate rows optically from each other.

[image: rule-editor]

Column

In the column editor, one can specify the width, the offset and the visibility of each column.
These values can be set for each of the four breakpoints (tiny, small, medium and large),
as specified by the Container plugin.

At the beginning this may feel rather complicate, but consider that Bootstrap 3 is mobile first,
therefore all column settings, first are applied to the narrow breakpoints, which later can be
overridden for larger breakpoints at a later stage. This is the reason why this editor starts with
the column widths and column offsets for tiny rather than for large displays.

[image: edit-column]

Note

If the current column is member of a container which disables some of its breakpoints
(large, medium, small or tiny), then that column editor shows up only with the
input fields for the enabled breakpoints.

Complete DOM Structure

After having added a container with different rows and columns, you may add the leaf plugins. These
hold the actual content, such as text and images.

[image: structure-container]

By pressing the button Publish changes, the single blocks are regrouped and displayed using
the Bootstrap’s grid system.

Adding Plugins into a hard coded grid

Sometimes the given Django template already defines a Bootstrap Container, or Row inside a Container
element. Example:

<div class="container">
 {% placeholder "Row Content" %}
</div>

or

<div class="container">
 <div class="row">
 {% placeholder "Column Content" %}
 </div>
</div>

Here the Django templatetag {% placeholder "Row Content" %} requires a Row- rather than a
Container-plugin; and the templatetag {% placeholder "Column Content" %} requires a
Column-plugin. Hence we must tell djangocms-cascade which breakpoints shall be allowed and what
the containers extensions shall be. This must be hard-coded inside your setting.py:

CMS_PLACEHOLDER_CONF = {
 # for a row-like placeholder configuration ...
 'Row Content': {
 'plugins': ['BootstrapRowPlugin'],
 'parent_classes': {'BootstrapRowPlugin': []},
 'require_parent': False,
 'glossary': {
 'breakpoints': ['xs', 'sm', 'md', 'lg'],
 'container_max_widths': {'xs': 750, 'sm': 750, 'md': 970, 'lg': 1170},
 'fluid': False,
 'media_queries': {
 'xs': ['(max-width: 768px)'],
 'sm': ['(min-width: 768px)', '(max-width: 992px)'],
 'md': ['(min-width: 992px)', '(max-width: 1200px)'],
 'lg': ['(min-width: 1200px)'],
 },
 }
 },
 # or, for a column-like placeholder configuration ...
 'Colummn Content': {
 'plugins': ['BootstrapColumnPlugin'],
 'parent_classes': {'BootstrapColumnPlugin': []},
 'require_parent': False,
 'glossary': {
 'breakpoints': ['xs', 'sm', 'md', 'lg'],
 'container_max_widths': {'xs': 750, 'sm': 750, 'md': 970, 'lg': 1170},
 'fluid': False,
 'media_queries': {
 'xs': ['(max-width: 768px)'],
 'sm': ['(min-width: 768px)', '(max-width: 992px)'],
 'md': ['(min-width: 992px)', '(max-width: 1200px)'],
 'lg': ['(min-width: 1200px)'],
 },
 }
 },
}

Please refer to the DjangoCMS documentation [https://django-cms.readthedocs.org/en/latest/basic_reference/configuration.html#std:setting-CMS_PLACEHOLDER_CONF] for details about these settings with the exception
of the dictionary glossary. This latter setting is special to djangocms-cascade: It gives
the placeholder the ability to behave like a plugin for the Cascade app. Remember, each
djangocms-cascade plugin stores all of its settings inside a Python dictionary which is
serialized into a single database field. By having a placeholder behaving like a plugin, here this
so named glossary is emulated using an additional entry inside the setting
CMS_PLACEHOLDER_CONF, and it should:

	include all the settings a child plugin would expect from a real container plugin

	reflect how hard coded container was defined (e.g. whether it is fluid or not)

Nested Columns and Rows

One of the great features of Bootstrap is the ability to nest Rows inside Columns. These nested Rows
then can contain Columns of 2nd level order. A quick example:

<div class="container">
 <div class="row">
 <div class="col-md-3">
 Left column
 </div>
 <div class="col-md-9">
 <div class="row">
 <div class="col-md-6">
 Left nested column
 </div>
 <div class="col-md-6">
 Right nested column
 </div>
 </div>
 </div>
 </div>
</div>

rendered, it would look like:

[image: nested-rows]

If a responsive image shall be placed inside a column, we must estimate the width of this image, so
that when rendered, it fits exactly into that column. We want easy-thumbnails [https://github.com/SmileyChris/easy-thumbnails] to resize our images
to the columns width and not having the browser to up- or down-scale them.

Therefore djangocms-cascade keeps track of all the breakpoints and the chosen column widths.
For simplicity, this example only uses the breakpoint “medium”. The default Boostrap settings for
this width is 992 pixels. Doing simple math, the outer left column widths gives
3 / 12 * 992 = 248 pixels. Hence, adding a responsive image to that column means, that
easy-thumnails automatically resizes it to a width of 248 pixels.

To calculate the width of the nested columns, first evaluate the width of the outer right column,
which is 9 / 12 * 992 = 744 pixels. Then this width is subdivided again, using the width of the
nested columns, which is 6 / 12 * 744 = 372 pixels.

These calculations are always performed recursively for all nested column and for all available
breakpoints.

Warning

As the name implies, a container marked as fluid, does not specify a fixed width.
Hence instead of the inner width, the container’s outer width is used as its maximum. For the
large media query (with a browser width of 1200 pixels or more), the maximum width is limited
to 1980 pixels.

Plugins for Bootstrap-4

This is a collection of plugins to be used with the Bootstrap-4 CSS framework:

	Bootstrap 4 Layout

	Bootstrap 4 Utilities

Bootstrap 4 Utilities

Bootstrap-4 pursues the approach of offering various utilities, which can be optionally applied to
all Bootstrap elements. djangocms-cascade follows this approach and offers mixin classes which
can be optionally added to all Bootstrap-4 plugins. They extend their respective’s plugin editor by
one or more extra fields, which the user can use to configure the appearance of the plugin.

Motivation

Say, you want to configure the Bootstrap Button Plugin to use the responsive float utilities [https://getbootstrap.com/docs/4.3/utilities/float/].
The clumsy approach would be to add a field using a select box, for adding the float classes
float-left, float-right and float-none to the plugin’s editor. This would be fine,
as long as these classes can only be used inside the context of a button element. The idea of
Bootstrap however is, to offer reusable components and CSS classes. Since djangocms-cascade
wants to follow this mindset, the editor for controlling those utilities is part of the mixin class
cmsplugin_cascade.bootstrap4.mixins.BootstrapUtilitiesMixin.

Usage

A Bootstrap-4 plugin, wanting to offer additional editable fields to the plugin’s editor, should
simple add this configuration to the project’s settings.py:

CMSPLUGIN_CASCADE['plugins_with_extra_mixins'] = {
 'BootstrapButtonPlugin': BootstrapUtilities(
 BootstrapUtilities.floats,
),
}

Implemented Utilitiy Properties

Currently the following utilities are implemented:

Background and Color

This adds a combination of one CSS class for the background and one for the foreground color [https://getbootstrap.com/docs/4.3/utilities/colors/].

Margins and Paddings

This adds all the CSS classes for margins and paddings [https://getbootstrap.com/docs/4.3/utilities/spacing/]. They follow the mobile first
principle, which means that all selected values can be overridden by a larger media breakpoint.

Floats

This adds all the CSS classes for adding responsive float utilities [https://getbootstrap.com/docs/4.3/utilities/float/].

 nav.xhtml

 Table of Contents

 		
 Welcome to DjangoCMS-Cascade’s documentation

 		
 For the Impatient

 		
 Create a Python Virtual Environment

 		
 Introduction

 		
 Extensibility

 		
 Naming Conflicts

 		
 Installation

 		
 Python Package Dependencies

 		
 djangocms-cascade-0.11.x

 		
 djangocms-cascade-0.12.x

 		
 djangocms-cascade-0.13.x

 		
 djangocms-cascade-0.14.x

 		
 djangocms-cascade-0.17.x - 0.19.x

 		
 djangocms-cascade-1.0.x

 		
 Optional packages

 		
 Create a database schema

 		
 Install Dependencies not handled by PIP

 		
 Using AngularJS instead of jQuery

 		
 Configuration

 		
 Configure the CMS plugin

 		
 Activate the plugins

 		
 Special settings when using the TextPlugin

 		
 Restrict plugins to a particular placeholder

 		
 Define the leaf plugins

 		
 Bootstrap 3 with AngularJS

 		
 Template Customization

 		
 Link Plugin

 		
 Prerequisites

 		
 Link Plugin with Sharable Fields

 		
 Changing shared settings

 		
 Extending the Link Plugin

 		
 Using Links in your own Plugins

 		
 Plugins for Bootstrap-3

 		
 Gallery

 		
 Bootstrap 3 Grid system

 		
 Bootstrap Container

 		
 Bootstrap Row

 		
 Horizontal Rule

 		
 Column

 		
 Complete DOM Structure

 		
 Adding Plugins into a hard coded grid

 		
 Nested Columns and Rows

 		
 HTML5 <picture> and the new elements

 		
 Adaptive resizing the images

 		
 Image Plugin Reference

 		
 Picture Plugin Reference

 		
 Template tag for the Bootstrap3 Navbar

 		
 Panel element

 		
 Jumbotron

 		
 Tab Sets

 		
 Secondary menu

 		
 Using Fonts with Icons

 		
 Introduction

 		
 Configuration

 		
 Uploading the Font

 		
 Using the Icon Plugin

 		
 Shared Settings

 		
 Using the Icon Plugin in plain text

 		
 Map Plugin using the Leaflet frontend

 		
 Installation

 		
 Configuration

 		
 Usage

 		
 Adding a marker to the map

 		
 Alternative Tiles

 		
 Mapbox

 		
 Google Maps

 		
 Default Starting Position

 		
 Handling the client side

 		
 Implementing the client

 		
 Plugin Inheritance

 		
 Section Bookmarks

 		
 Configuration

 		
 Hashbang Mode

 		
 Usage

 		
 Hyperlinking to a Bookmark

 		
 Segmentation of the DOM

 		
 Configuration

 		
 Usage

 		
 Emulating Users

 		
 Working with sharable fields

 		
 Configure a Cascade Plugins to optionally share some fields

 		
 Control some named settings

 		
 Customize CSS classes and inline styles

 		
 Configure a Cascade plugins to accept extra fields

 		
 Enable extra fields through the administration backend

 		
 Allow ID

 		
 CSS classes

 		
 CSS inline styles

 		
 Dynamically add styles to the Text-Editor

 		
 Choose an alternative rendering template

 		
 Change the path for template lookups

 		
 Configure Cascade Plugins to be rendered using alternative templates

 		
 Usage

 		
 Conditionally hide some plugin

 		
 Enable the meachanism

 		
 The CMS Clipboard

 		
 Persisting the Clipboard

 		
 Configuration

 		
 Caveats

 		
 Use Cascade outside of the CMS

 		
 Usage

 		
 In Templates

 		
 Caveats when creating your own Plugins

 		
 Invoking super

 		
 Templatetag render_plugin

 		
 Caching

 		
 Integrate Sphinx Documentation

 		
 Configuration

 		
 Configure Sphinx Builder

 		
 Integration with the CMS

 		
 The Documentation Template

 		
 Linking onto Documentation Pages

 		
 Extending Cascade

 		
 Simple Example

 		
 Customize the Plugin Editor

 		
 Special Form Field for Plugin Editors

 		
 Overriding the Model

 		
 JavaScript

 		
 Adding extra fields to the model

 		
 Transparent Plugins

 		
 Plugin Attribute Reference

 		
 Plugin Permissions

 		
 Generic Plugins

 		
 SimpleWrapperPlugin

 		
 HorizontalRulePlugin

 		
 HeadingPlugin

 		
 CustomSnippetPlugin

 		
 Adding children to a CustomSnippetPlugin

 		
 Release History

 		
 1.1.9

 		
 1.1.8

 		
 1.1.7

 		
 1.1.6

 		
 1.1.5

 		
 1.1.4

 		
 1.1.3

 		
 1.1.2

 		
 1.1.1

 		
 1.1

 		
 1.0 (Warning: API changes!)

 		
 0.19

 		
 0.18.2

 		
 0.18.1

 		
 0.18

 		
 0.17.10

 		
 0.17.9

 		
 0.17.8

 		
 0.17.7

 		
 0.17.6

 		
 0.17.5

 		
 0.17.4

 		
 0.17.3

 		
 0.17.2

 		
 0.17.1

 		
 0.17

 		
 0.16.3

 		
 0.16.2

 		
 0.16.1

 		
 0.16

 		
 0.15.5

 		
 0.15.4

 		
 0.15.3

 		
 0.15.1 and 0.15.2

 		
 0.15

 		
 0.14.4

 		
 0.14.3

 		
 0.14.2

 		
 0.14.1

 		
 0.14

 		
 0.13.1

 		
 0.13

 		
 0.12.5

 		
 0.12.4

 		
 0.12.3

 		
 0.12.2

 		
 0.12.1

 		
 0.12.0

 		
 0.11.1

 		
 0.11.0

 		
 0.10.2

 		
 0.10.1

 		
 0.10.0

 		
 0.9.4

 		
 0.9.3

 		
 0.9.2

 		
 0.9.1

 		
 0.9.0

 		
 0.8.5

 		
 0.8.4

 		
 0.8.3

 		
 0.8.2

 		
 0.8.1

 		
 0.8.0

 		
 0.7.3

 		
 0.7.2

 		
 0.7.1

 		
 0.7.0

 		
 0.6.2

 		
 0.6.1

 		
 0.6.0

 		
 0.5.0

 		
 0.4.5

 		
 0.4.4

 		
 0.4.3

 		
 0.4.2

 		
 0.4.1

 		
 0.4.0

 		
 0.3.2

 		
 0.3.1

 		
 0.3.0

 		
 0.2.0

 		
 0.1.2

 		
 0.1.1

 		
 0.1.0

 		
 Thanks

_images/add-container.png
Main Content Container

Add plugin to placeholder "Main Content Cont

Bootstrap

Container

Generic
Link

Text

_images/art_direction.jpg

_images/edit-container.png
@ Toy(res @ Smal(a768pxand <992p0)

Supported csplay widhs or Bootstrap's rid system.
Fluid Container

‘Ghanging your outermost " containerto"container-fud

Container

Container

]

@ Medium (2092px and <1200p%)

@ Large (21200p9)

_images/edit-image.png
Image

image:
ArtemisiaGenipiipg Q X

Image Title
Genepl

‘Gapion textacded tothe il atirbute ofthe element.

Alternative Description

Textualdoscripton of th image added to the'alt g of the sament.

Link type: | External URL % hitps:/t.wikipedia.orghwiki/Genep%Ca%

Link onto external page

Link Target
@ SameWindow () NewWndow () ParentWindow () TopmostFrame
Open Linkin othe target.

Image Shapes
@ FResponsve () Rounded () Cide @ Thumbnal

Responsive Image Width
100%

‘ot the image width in porcent rolatve to contaling elemert

Adapt Image Height

‘Seta fixed hight n pixas, or parcent relative o he image width.

Resize Options
O Upscaleimage @ Cropimage @ Withsubjectiocation @ Optimized for Retina
Optons o use when resizing th mage

Container Row Coumn Image Gancel

_images/customize-styles.png
Django administration ‘Welcome, admin. Change password / Log out

Home Csplugin_cas E < PluginExtraFilds objoct
Change Custom CSS classes and styles History
PluginName: | Bootstrap Simple Wrapper 3
site: example.com 3| 4
@ Alowidtag
CSS class names Allow multiple

thumbnei, jumbotron o

Froaly slectable CSS classnamesforthis Plugin, separated by commas.

Customized Margins Fields: Units for Margins Fields:
O magntop () magnright () margin-botom () margineft [pxemand% 3
Customized Paddings Fields: Units for Paddings Fields:
O paddngtop () paddngright () paddingbotom (] paddngeft [px,emand% &
Customized Widths Fields: Units for Widths Fields:
O mnwidh O wdh (O macwidth [pxemand% %
Customized Heights Fields: Uniits for Heights Fields:
@ minheight () heignt () macheight | pxandem
Customized Colors Fields:
O coor @ background-color
Customized Overflow Fields:
O oveflow (O overowx (J overfiow-y

[oo | [SR———— .. |

_images/edit-column.png
Column

Default column width
4units ¢

Number of column unitsfordevices narower than 768 pixels.

Responsive utilities for mobile phones
@ Defait (O Visble (O Hidden
Uiy lassesfo showing and hding cotant by devies naower than 768 iel.

Column width for tablets
Inhert from above 3

‘Override column unisfor deices naower than 952 pixis.

Offset for tablets.
Nooffset 4

Number of offset urts fo devices narrower than 992 pixels.

Responsive utilities for tablets
@ Defait (O Visble (O Hidden
Uity classes forshowing and hicing content by devices naower than 992 pixels.

Column width for laptops
Inherit from above §

‘Override column unitsfor devices naower than 1200 pixas.

Offset for laptops
No offset 4

Number of offset urts fo devices narrower than 1200 pixes.

Responsive utilities for laptops
@ Defait (O Visble (O Hidden
Uiy lasses fo showing and hcing content by devices narowe than 1200 pixel.

Column width for large desktops
Inherit from above §

‘Override coumn unitsfor devices wider than 1200 pixel.

Offset for large desktops
No offset 4

Number of ofse uns for deicss widerthan 1200 pixls.
Responsive utilities for large desktops

@ Defait (O Visble (O Hidden
Uity classes for showing and hiding content by devices wider than 1200 pels.

Container Row Column

_images/edit-picture.png
SR

Image Title
Bo White House:

‘Gapion textacded to the il atirbute ofthe element.

Alternative Description

Textualdoscripton of th image added to the 'alt ag of the elament.

Link type: | No Link k2
Adapt Picture Heights
s sm ma)
400% 100% 200% 100%

Hoights of cturs I percont or pixas for distinct Bootstrap's braakpoints.

Adapt Picture Zoom
s sm ma)
400% 200% 100% 0%

Magrifcaton of piture In parcent fo dstinct Bootstrap's breakpoints.

Resize Options
@ Upscaleimage @ Cropimage @ Wit subjectiocation () Optimized for Retina
Options to use when resizing the image.

Container Row Coumn Picture Cancel

_images/edit-row.png
®

Columns:

Container

[3columns 4

Number of columns to be created with this row.

Row

_images/edit-shared-fields.png
Django administration

Home Cmsplugn,

ads » Shared betwoen Plugins » imgsave

Welcome, admin. Change password / Log out

Change BootstraplmagePlugin

Identifier: My Bhared Image Fields

Shared Fields

Image Shapes

@ Rosponsve () Rounded

@ Cirde

Responsive Image Width
0%

Sot the image width n percent relatve to containing element

Adapt Image Height
0%

St afxed helght I piels, o percent reatve to the mage wicth.

Resize Options

 Upscaleimage @ Grop image
Optons o use when resizing th mage

@ With subjct location

@ Thumbrai

@ Optimized for Retina

_images/navbar.png
Project name HOME About Contact ~ Dropdown~
Dropdown

Action

Something

_images/nested-rows.png
Level 1: .col-md-3

Level 1: col-md-9

Level 2: .col-md-6

_images/link-bookmark.png
Link: CMSPage +

Type o link

Home () x v titled 4

‘An internal lnk onto CMS pages of thi

Page bookmark

_images/navbar-mobile.png
Project name

HOME
About
Contact
Dropdown~
Dropdown

Action

Something

_images/remember-settings.png
(O Remember these settings as:

_images/rule-editor.png
Horizontal Rule

There are no further settings for this plugin

Please hit OK to save.

Container Horizontal Rule

_images/page-hierarchy.png
example.com Page History Language

Select page to change Add page
Fiter:off
Q
Search

ENUS Mew Actons o

Home o [} L]

About ® o (o] o
Contact ® o (] o
Dropdown ® o (] o
Action ® o (] o
Something ® o [m] []

_images/persist-clipboard.png
Change Persited Clipboard Content History

Identifier: Main Content
o - |
Glpboard:

Glpboard:

Data R &

Enter valid SON

sovm st soaor sovasnaconssann [0

_images/segment-plugin.png
Condition tag
[ED

Django’s conditon tag

Condition evaluation

| user.is_anonymous|

Evaluatin as used in Diango's tampate tags fo concitons.

Row Column Segment

_images/sharable-link-element.png
|pwowsewon 0 x|

Add sharable link element

Link Content: Click here

Content of Link

Shared Settings: | Use individual settings &

Use settings shared with other plugins of this type

Link type: CMSPage & .

‘An internallink onto CMS pages of tis ste

| Title

)

Links Tt

Link Target

@© sameWindow O NewWindow (O Parent Window O Topmost Frame
Open Link in other target.

_images/section-bookmark.png
Element ID

titlel

‘A unique identifer for this element

_images/use-shared-settings.png
Stared Settings:

Use setings shared with other plugins of this type

_static/ajax-loader.gif

_images/simple-link-element.png
Add CMS Plugin

Add simple link element

Link Gontent: Link
Content of Link

Link type: CMS Page &

Title

Link's Tite

Link Target

@ SameWindow O New Window

‘Open Link nothar target.

© Parent Window

© Topmost Frame

= o P

_images/structure-container.png
IAIN CONTENT G
v Container ranging from 720 through 1140 pixels
v Row with 3 columns
v Column default width: 4 units

Text Early and frequent

v Column default width: 4 units

Text This belief reinforced

v Column default width: 4 units.

Text The most important.

_static/comment-bright.png

_static/art_direction.jpg

_static/customize-styles.png
Django administration ‘Welcome, admin. Change password / Log out

Home Csplugin_cas E < PluginExtraFilds objoct
Change Custom CSS classes and styles History
PluginName: | Bootstrap Simple Wrapper 3
site: example.com 3| 4
@ Alowidtag
CSS class names Allow multiple

thumbnei, jumbotron o

Froaly slectable CSS classnamesforthis Plugin, separated by commas.

Customized Margins Fields: Units for Margins Fields:
O magntop () magnright () margin-botom () margineft [pxemand% 3
Customized Paddings Fields: Units for Paddings Fields:
O paddngtop () paddngright () paddingbotom (] paddngeft [px,emand% &
Customized Widths Fields: Units for Widths Fields:
O mnwidh O wdh (O macwidth [pxemand% %
Customized Heights Fields: Uniits for Heights Fields:
@ minheight () heignt () macheight | pxandem
Customized Colors Fields:
O coor @ background-color
Customized Overflow Fields:
O oveflow (O overowx (J overfiow-y

[oo | [SR———— .. |

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/empty-container.png
Project name Home

Add Bootstrap container here

Use this placeholder as a quick way to start editing a new CMS page.
All you have to do is to append ?edit to the URL and switch to “Structure” mode.

Place sticky footer content here.

_static/down.png

_static/edit-shared-fields.png
Django administration

Home Cmsplugn,

ads » Shared betwoen Plugins » imgsave

Welcome, admin. Change password / Log out

Change BootstraplmagePlugin

Identifier: My Bhared Image Fields

Shared Fields

Image Shapes

@ Rosponsve () Rounded

@ Cirde

Responsive Image Width
0%

Sot the image width n percent relatve to containing element

Adapt Image Height
0%

St afxed helght I piels, o percent reatve to the mage wicth.

Resize Options

 Upscaleimage @ Grop image
Optons o use when resizing th mage

@ With subjct location

@ Thumbrai

@ Optimized for Retina

_static/file.png

_static/link-bookmark.png
Link: CMSPage +

Type o link

Home () x v titled 4

‘An internal lnk onto CMS pages of thi

Page bookmark

_static/navbar.png
Project name HOME About Contact ~ Dropdown~
Dropdown

Action

Something

_static/nested-rows.png
Level 1: .col-md-3

Level 1: col-md-9

Level 2: .col-md-6

_static/minus.png

_static/navbar-mobile.png
Project name

HOME
About
Contact
Dropdown~
Dropdown

Action

Something

_static/plus.png

_static/pull-down.png

_static/page-hierarchy.png
example.com Page History Language

Select page to change Add page
Fiter:off
Q
Search

ENUS Mew Actons o

Home o [} L]

About ® o (o] o
Contact ® o (] o
Dropdown ® o (] o
Action ® o (] o
Something ® o [m] []

_static/persist-clipboard.png
Change Persited Clipboard Content History

Identifier: Main Content
o - |
Glpboard:

Glpboard:

Data R &

Enter valid SON

sovm st soaor sovasnaconssann [0

_static/live-demo.png
Project name Home

Release Eary, Release often

Early and frequent releases are a
critical part of the Linux
development model. Most
developers (including me) used to
believe this was bad policy for
larger than trivial projects,
because early versions are almost
by definition buggy versions and
Yyou don't want to wear out the
patience of your users.

The most important of these, the
Ohio State Emacs Lisp archive,
anticipated the spirit and many of
the features of today's big Linux
archives. But few of us really
thought very hard about what we
were doing, or about what the
Very existence of that archive
suggested about problems in the
FSF's cathedral-building

Release early. Release often. And
listen to your customers.

Linus's innovation wasn't so much
in doing quick-turnaround
releases incorporating lots of user
feedback (something like this had
been Unix-world tradition for a
long time), but in scaling it up to a
level of intensity that matched the.
complexity of what he was

_static/sharable-link-element.png
|pwowsewon 0 x|

Add sharable link element

Link Content: Click here

Content of Link

Shared Settings: | Use individual settings &

Use settings shared with other plugins of this type

Link type: CMSPage & .

‘An internallink onto CMS pages of tis ste

| Title

)

Links Tt

Link Target

@© sameWindow O NewWindow (O Parent Window O Topmost Frame
Open Link in other target.

_static/simple-link-element.png
Add CMS Plugin

Add simple link element

Link Gontent: Link
Content of Link

Link type: CMS Page &

Title

Link's Tite

Link Target

@ SameWindow O New Window

‘Open Link nothar target.

© Parent Window

© Topmost Frame

= o P

_static/section-bookmark.png
Element ID

titlel

‘A unique identifer for this element

_static/segment-plugin.png
Condition tag
[ED

Django’s conditon tag

Condition evaluation

| user.is_anonymous|

Evaluatin as used in Diango's tampate tags fo concitons.

Row Column Segment

_static/up.png

_static/use-shared-settings.png
Stared Settings:

Use setings shared with other plugins of this type

_static/structure-container.png
IAIN CONTENT G
v Container ranging from 720 through 1140 pixels
v Row with 3 columns
v Column default width: 4 units

Text Early and frequent

v Column default width: 4 units

Text This belief reinforced

v Column default width: 4 units.

Text The most important.

_static/up-pressed.png

_static/remember-settings.png
(O Remember these settings as:

_static/rule-editor.png
Horizontal Rule

There are no further settings for this plugin

Please hit OK to save.

Container Horizontal Rule

_static/bootstrap3/edit-image.png
Image

image:
ArtemisiaGenipiipg Q X

Image Title
Genepl

‘Gapion textacded tothe il atirbute ofthe element.

Alternative Description

Textualdoscripton of th image added to the'alt g of the sament.

Link type: | External URL % hitps:/t.wikipedia.orghwiki/Genep%Ca%

Link onto external page

Link Target
@ SameWindow () NewWndow () ParentWindow () TopmostFrame
Open Linkin othe target.

Image Shapes
@ FResponsve () Rounded () Cide @ Thumbnal

Responsive Image Width
100%

‘ot the image width in porcent rolatve to contaling elemert

Adapt Image Height

‘Seta fixed hight n pixas, or parcent relative o he image width.

Resize Options
O Upscaleimage @ Cropimage @ Withsubjectiocation @ Optimized for Retina
Optons o use when resizing th mage

Container Row Coumn Image Gancel

_static/bootstrap3/edit-picture.png
SR

Image Title
Bo White House:

‘Gapion textacded to the il atirbute ofthe element.

Alternative Description

Textualdoscripton of th image added to the 'alt ag of the elament.

Link type: | No Link k2
Adapt Picture Heights
s sm ma)
400% 100% 200% 100%

Hoights of cturs I percont or pixas for distinct Bootstrap's braakpoints.

Adapt Picture Zoom
s sm ma)
400% 200% 100% 0%

Magrifcaton of piture In parcent fo dstinct Bootstrap's breakpoints.

Resize Options
@ Upscaleimage @ Cropimage @ Wit subjectiocation () Optimized for Retina
Options to use when resizing the image.

Container Row Coumn Picture Cancel

_static/bootstrap3/edit-container.png
@ Toy(res @ Smal(a768pxand <992p0)

Supported csplay widhs or Bootstrap's rid system.
Fluid Container

‘Ghanging your outermost " containerto"container-fud

Container

Container

]

@ Medium (2092px and <1200p%)

@ Large (21200p9)

_static/bootstrap3/edit-grid.png
Grid

Column Grid

4units 4
Grid in column units,

Prefix
unused

Suffix
unused

Options
O Leftaligned () Rightaligned () Clearfix

Inline Styles

min-height margin-top margin-botton|
Minimum height for this column.

Container 12 Grid

cune

_static/bootstrap3/edit-row.png
®

Columns:

Container

[3columns 4

Number of columns to be created with this row.

Row

_static/bootstrap3/add-row.png
Container ranging from 720 through 1140 pixels

Settings
Copy

Cut

Edit

Detete

Create Alias
Bootstrap
Horizontal Rule

_static/bootstrap3/edit-column.png
Column

Default column width
4units ¢

Number of column unitsfordevices narower than 768 pixels.

Responsive utilities for mobile phones
@ Defait (O Visble (O Hidden
Uiy lassesfo showing and hding cotant by devies naower than 768 iel.

Column width for tablets
Inhert from above 3

‘Override column unisfor deices naower than 952 pixis.

Offset for tablets.
Nooffset 4

Number of offset urts fo devices narrower than 992 pixels.

Responsive utilities for tablets
@ Defait (O Visble (O Hidden
Uity classes forshowing and hicing content by devices naower than 992 pixels.

Column width for laptops
Inherit from above §

‘Override column unitsfor devices naower than 1200 pixas.

Offset for laptops
No offset 4

Number of offset urts fo devices narrower than 1200 pixes.

Responsive utilities for laptops
@ Defait (O Visble (O Hidden
Uiy lasses fo showing and hcing content by devices narowe than 1200 pixel.

Column width for large desktops
Inherit from above §

‘Override coumn unitsfor devices wider than 1200 pixel.

Offset for large desktops
No offset 4

Number of ofse uns for deicss widerthan 1200 pixls.
Responsive utilities for large desktops

@ Defait (O Visble (O Hidden
Uity classes for showing and hiding content by devices wider than 1200 pels.

Container Row Column

_static/bootstrap3/add-container.png
Main Content Container

Add plugin to placeholder "Main Content Cont

Bootstrap

Container

Generic
Link

Text

